若定義雙曲線對稱軸與雙曲線交點即雙曲線頂點,則等軸雙曲線xy=4的焦距為
 
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:等軸雙曲線xy=4的對稱軸為直線y=x,進而求出雙曲線的頂點坐標(biāo),進而求出a,b的值,和c的值,可得雙曲線的焦距.
解答: 解:等軸雙曲線xy=4的對稱軸為直線y=x,
故等軸雙曲線xy=4的頂點坐標(biāo)為:(2,2)和(-2,-2)點,
故a=b=2
2

故c=4,
故等軸雙曲線xy=4的焦距為8,
故答案為:8
點評:本題考查的知識點是雙曲線的簡單性質(zhì),難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在原點,對稱軸是x軸,且頂點與焦點的距離等于6,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
2
=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點.
(1)求
PA1
PF2
的最小值;
(2)若直線l為圓O:x2+y2=2上動點Q(x0,y0)(x0y0≠0)處的切線,且與雙曲線C交于不同的兩個點A,B,證明△ABO為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=kex-ex2(x∈R,)其中無理數(shù)e是自然對數(shù)的底數(shù).
(1)若k=1,求f(x)的圖象在x=1處的切線l的方程;
(2)若f(x)有兩個不同的極值點x1,x1′,求實數(shù)k的取值范圍;
(3)若k依序取值1,
4
3
,…,
2n
n+1
(n∈N*)時,分別得到f(x)的極值點對(x1,x1′),(x2,x2′),…(xn,xn′),其中xi<xi′(i=1,2,…,n),求證:對任意正整數(shù)n≥2,有(2-x1)(2-x2)…(2-xn)<
1
x1x2…xn
=
n+1
e(x1+x2xn-n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=
1
sin7
,b=lgπ,c=e-
1
2
,則( 。
A、a<b<c
B、c<a<b
C、b<a<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N+).
(1)證明數(shù)列{an+1}是等比數(shù)列;
(2)令f(x)=a1x+a2x2+…anxn,f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),令bn=f(1),求數(shù)列{bn}的通項公式;
(3)若bn<30成立,試求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α為銳角,
a
=(cosα,sinα),
b
=(1,-1)且
a
b
=
2
2
3
,則sin(α+
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(x-y)cosy+cos(x-y)siny.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,E,F(xiàn)分別為正方體ABCD-A1B1C1D1的棱B1C1和AD的中點,求證:
(1)四邊形D1EBF為平行四邊形;
(2)AB1∥平面D1EBF.

查看答案和解析>>

同步練習(xí)冊答案