精英家教網 > 高中數學 > 題目詳情
已知雙曲線的方程,則離心率為                .

試題分析:因為a=2,.
點評: 由雙曲線的標準方程可求出a,c的值,再根據求離心率即可.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

已知以雙曲線C的兩個焦點及虛軸的兩個端點為原點的四邊形中,有一個內角為,則雙曲線C的離心率為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的一條弦被平分,那么這條弦所在的直線方程是  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

以橢圓的焦點為頂點、頂點為焦點的的雙曲線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為
A.-2B.2 C.-4D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知拋物線的焦點與橢圓的一個焦點重合,過點的直線與拋物線交于兩點,若,則的值(  )
A.B.C.D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的準線與雙曲線的右準線重合,則的值是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題15分)設拋物線和點,.斜率為的直線與拋物線相交不同的兩個點.若點恰好為的中點.
(1)求拋物線的方程,
(2) 拋物線上是否存在異于的點,使得經過點的圓和拋物線處有相同的切線.若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點為拋物線的焦點,為原點,點是拋物線準線上一動點,點在拋物線上,且,則的最小值為  ( )
A.6B.C.D.

查看答案和解析>>

同步練習冊答案