已知定義域為的函數(shù)是奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)證明函數(shù)上是減函數(shù).

(1),(2)詳見解析

解析試題分析:(1)根據(jù)定義域能取到零的奇函數(shù)過原點,即解方程可求得值;(2)利用函數(shù)單調(diào)性的定義證明函數(shù)上是減函數(shù),分四步:第一“取值”,第二“作差、變形”,第三“定號”、第四“下結論”,即證明函數(shù)單調(diào)性的“四部曲”.
試題解析:(Ⅰ)∵是奇函數(shù),所以(經(jīng)檢驗符合題設)
(Ⅱ)由(1)知.對,當時,總有
,
,

∴函數(shù)上是減函數(shù).
考點:奇函數(shù)的性質(zhì)應用,函數(shù)單調(diào)性的證明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

若不等式對一切恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為實數(shù),函數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了預防流感,某學校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量毫克)與時間(小時)成正比;藥物釋放完畢后,的函數(shù)關系式為為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:

(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關系式;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室.那從藥物釋放開始,至少需要經(jīng)過多少小時后,學生才能回到教室?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

記數(shù)列{}的前n項和為為,且+n=0(n∈N*)恒成立.
(1)求證:數(shù)列是等比數(shù)列;
(2)已知2是函數(shù)f(x)=+ax-1的零點,若關于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為(萬元),當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為500元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費,預計當每件商品的售價為元時,一年的銷售量為萬件.
(Ⅰ)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關系式;
(Ⅱ)當每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)=x2x+13,實數(shù)a滿足|xa|<1,求證:|f(x)f(a)|<2(|a|+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知 函數(shù),若且對任意實數(shù)均有成立.
(1)求表達式;
(2)當是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案