如果關(guān)于實數(shù)x的方程ax2+
1
x
=3x
的所有解中,僅有一個正數(shù)解,那么實數(shù)a的取值范圍為______.
將方程ax2+
1
x
=3x
改寫為
1
x
=3x-ax2
,令y1=
1
x
,y2=3x-ax2
“關(guān)于實數(shù)x的方程ax2+
1
x
=3x
的所有解中,僅有一個正數(shù)解”等價于“雙曲線y1=
1
x
與y2=3x-ax2的圖象在y軸右側(cè)只有一個交點”.
雙曲線y1=
1
x
在第一、三象限內(nèi).
當(dāng)a>0時,拋物線y2=3x-ax2的開口向下且過原點(0,0)及x軸正半軸上的點(
3
a
,0)
,研究知,當(dāng)a<2時,雙曲線y1=
1
x
與拋物線y2=3x-ax2在第一象限內(nèi)有兩個交點,當(dāng)a>2時,兩曲線在第一象限無交點,當(dāng)a=2進(jìn),兩曲線僅有一個交點,故a=2符合題意.
當(dāng)a=0時,y2=3x-ax2=3x為直線,此時,雙曲線y1=
1
x
與直線y2=3x在第一象限內(nèi)只有一個交點,故a=0符合題意.
當(dāng)a<0時,拋物線y2=3x-ax2的開口向上且過原點(0,0)及x軸負(fù)半軸上的點(
3
a
,0)
,此時,雙曲線y1=
1
x
與拋物線y2=3x-ax2在第一象限內(nèi)僅有一個交點,故a<0符合題意.
綜上所述,實數(shù)a的取值范圍為(-∞,0]∪{2}.
故答案為:(-∞,0]∪{2}.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于實數(shù)x的方程ax2+
1x
=3x
的所有解中,僅有一個正數(shù)解,那么實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于實數(shù)x的方程ax2+
1
x
=3x
的所有解中,僅有一個正數(shù)解,那么實數(shù)a的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:①若區(qū)間D內(nèi)任意實數(shù)x都有f(x+1)>f(x),則y=f(x)在D上是增函數(shù);②y=-
1
x
在定義域內(nèi)是增函數(shù);③函數(shù)f(x)=
1-x2
|x+1|-1
圖象關(guān)于原點對稱;④如果關(guān)于實數(shù)x的方程ax2+
1
x
=3x
的所有解中,正數(shù)解僅有一個,那么實數(shù)a的取值范圍是a≤0;  其中正確的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:①若區(qū)間D內(nèi)任意實數(shù)x都有f(x+1)>f(x),則y=f(x)在D上是增函數(shù);②y=-
1
x
在定義域內(nèi)是增函數(shù);③函數(shù)f(x)=
1-x2
|x+1|-1
圖象關(guān)于原點對稱;④如果關(guān)于實數(shù)x的方程ax2+
1
x
=3x
的所有解中,正數(shù)解僅有一個,那么實數(shù)a的取值范圍是a≤0;  其中正確的序號是______.

查看答案和解析>>

同步練習(xí)冊答案