年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知圓過(guò)兩點(diǎn),且圓心在上.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線,為切點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
、已知圓,直線
(1)求證:直線恒過(guò)定點(diǎn);
(2)設(shè)與圓交于兩點(diǎn),若,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知定點(diǎn)A(4,0)和圓x2+y2=4上的動(dòng)點(diǎn)B,點(diǎn)P分AB之
比為2∶1,求點(diǎn)P的軌跡方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線過(guò)點(diǎn),圓:.
(1)求截得圓弦長(zhǎng)最長(zhǎng)時(shí)的直線方程;
(2)若直線被圓N所截得的弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圓心為C,直線l:y=x+m.
(1)若m=4,求直線l被圓C所截得弦長(zhǎng)的最大值;
(2)若直線l是圓心下方的切線,當(dāng)a在的變化時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
19.(本小題滿分8分)已知,過(guò)點(diǎn)M(-1,1)的直線l被圓C:x2 + y2-2x + 2y-14 = 0所截得的弦長(zhǎng)為4,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知雙曲線(a>0,b>0)的一條漸近線與圓相交于A,B兩點(diǎn),若|AB|=2,則該雙曲線的離心率為( )
A.8 | B.2 | C.3 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分8分)已知點(diǎn)、的坐標(biāo)分別為、,動(dòng)點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作直線與軌跡相切,求切點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com