下列命題中:
①“若x2+y2≠0,則x,y不全為零”的否命題;
②“若m>0,則x2+x-m=0有實根”的逆否命題;
③若過定點M(-1,0)且斜率為k的直線與圓x2+4x+y2-5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是0≤k≤
5
;
④已知二面角α-l-β的平面角的大小是60°,P∈α,Q∈β,R是直線l上的任意一點,過點P與Q作直線l的垂線,垂足分別為P1,Q1,且|PP1|=2,|QQ1|=3,|P1Q1|=5,則|PR|+|QR|的最小值為5
2
;
以上命題正確的為______(把所有正確的命題序號寫在答題卷上).
①“若x2+y2≠0,則x,y不全為零”的否命題是“若x2+y2=0,則x=y=0”,它是真命題;
②當m>0時,關于x的方程x2+x-m=0的判別式△=1+4m>0,
∴方程有實根,是正確的命題,
∴它的逆否命題也是正確的;
③如圖,圓的方程可化為(x+2)2+y2=9,
∴圓心坐標為(-2,0),半徑r=3,
令x=0,則y=±
5
,
設A(0,
5
),又M(-1,0),∴kMA=
5
,
∵直線過第一象限且過(-1,0)點,∴k>0,
又直線與圓在第一象限內(nèi)有交點,
∴k<
5
,
∴k的取值范圍是(0,
5
);
∴命題③錯誤;
④如圖
顯然,點R在P1Q1上時,|PR|+|QR|的值取到最小,
設P1R=x,則Q1R=5-x,
∴|PR|+|QR|=y=
x2+22
+
(x-5)2+32
(0≤x≤5),
∴當x=2時,y取得最小值5
2
;
∴命題④正確;
所以,以上正確的命題是①②④;
故答案為:①②④.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列四個命題
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則f(x)=x2+ax-3只有一個零點;
③若lga+lgb=lg(a+b),則a+b的最小值為4;
④對于任意實數(shù)x,有f(-x)=f(x),且當x>0時,f'(x)>0,則當x<0時,f'(x)<0.
其中正確的命題有______(填所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以下命題:①y=x+
1
x
≥2,②若a>0,b>0且a+b=2,則ab≤1,③
x
+
4
x
的最小值為4,④a∈R,a2+1>2a.其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給出下列命題:
①若“p或q”是假命題,則“﹁p且﹁q”是真命題;
②若|x|>|y|,則x2>y2;
③若關于x的實系數(shù)一元二次不等式ax2+bx+c≤0的解集為∅,則必有a>0且△≤0;
x>2
y>2
?
x+y>4
xy>4

其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中正確的是(  )
A.若p∨q為真命題,則p,q均為真命題
B.命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”
C.“a≥5”是“?x∈[1,2],x2-a≤0恒成立“的充要條件
D.在△ABC中,“a>b”是“sinA>sinB”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

現(xiàn)給出下列命題:
①若p,q是兩個簡單命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若橢圓
x2
16
+
y2
25
=1
的兩個焦點為F1,F(xiàn)2,且弦AB過點F1,則△ABF2的周長為16;
③過點(0,2)與拋物線y2=-5x僅有一個公共點的直線有3條;
④導數(shù)為0的點一定是函數(shù)的極值點.
其中正確的結(jié)論的序號是______(要求寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題正確的個數(shù)為(  )
①已知-1≤x+y≤1,1≤x-y≤3,則3x-y的范圍是[1,7];
②若不等式2x-1>m(x2-1)對滿足|m|≤2的所有m都成立,則x的范圍是(
7
-1
2
,
3
+1
2
);
③如果正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是[8,+∞);
a=log
1
3
2,b=log
1
2
3,c=(
1
3
)0.5
大小關系是a>b>c.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給出下列五個命題:
①隨機事件的概率不可能為0;
②事件A,B中至少有一個發(fā)生的概率一定比A,B中恰有一個發(fā)生的概率大;
③擲硬幣100次,結(jié)果51次出現(xiàn)正面,則出現(xiàn)正面的概率是
51
100
;
④互斥事件不一定是對立事件,對立事件一定是互斥事件;
⑤如果事件A與B相互獨立,那么A與
.
B
.
A
與B,
.
A
.
B
也都相互獨立
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知異面直線a、b的方向向量分別為
a
、
b
,平面α、β的法向量分別為
m
n
,則下列命題中是假命題的是(  )
A.對于
p
,若存在實數(shù)x、y使得
p
=x
a
+y
b
,則
p
a
,
b
共面
B.若
a
m
,則a⊥α
C.若cos<
a
,
m
>=-
1
2
,則l與α所成角大小為60°
D.若二面角α-l-β的大小為γ,則γ=<
m
,
n
>或π-<
m
,
n

查看答案和解析>>

同步練習冊答案