已知m∈R,復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.
(1)實數(shù)m取什么值時,復(fù)數(shù)z為純虛數(shù)?
(2)實數(shù)m取什么值時,復(fù)數(shù)z對應(yīng)的點在直線y=
1
2
x上?
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復(fù)數(shù)
分析:(1)由純虛數(shù)的定義可得
m2-5m+6=0
m2-3m≠0
,解得m即可.
(2)由題意可得m2-5m+6=2(m2-3m),解得即可.
解答: 解:(1)由純虛數(shù)的定義可得
m2-5m+6=0
m2-3m≠0
,解得m=2.
(2)由題意可得m2-5m+6=2(m2-3m),解得m=3或m=-2.
點評:本題考查了純虛數(shù)的定義和幾何意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列選項正確的是( 。
A、若ac2>bc2,則a>b
B、若
a
c
b
c
,則a>b
C、若a2>b2,則a>b
D、若|a|>|b|,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙3人分配到7個實驗室準(zhǔn)備實驗,若每個實驗室最多分配2人,則不同分配方案共有( 。
A、336B、306
C、258D、296

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是方程x2+3x-3=0的兩個實數(shù)根,則
x2
x1
+
x1
x2
的值為( 。
A、5B、-5C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a∈R.
(1)當(dāng)a=4時,求函數(shù)f(x)的極值點;
(2)令F(x)=f(x)+(a+2)x,若函數(shù)F(x)在區(qū)間[2,+∞)上單調(diào)遞增,求a的取值范圍;
(3)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時,若
h(x)-g(x)
x-x0
>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“特殊點”,當(dāng)a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“特殊點”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)m取什么值時,復(fù)數(shù)z=(m2-3m-4)+(m+1)i是:
(1)實數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,上頂點為A,在c軸負(fù)半軸上有一點B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求橢圓D的離心率;
(Ⅱ)若過A、B、F2三點的圓C恰好與直線l:x-
3
y-3=0相切,求圓C方程及橢圓D的方程;
(Ⅲ)若過點T(3,0)的直線與橢圓D相交于兩點M、N,設(shè)P為橢圓上一點,且滿足
OM
+
ON
=t
OP
(O為坐標(biāo)原點),求實數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓E經(jīng)過點M(2,3),對稱軸為坐標(biāo)軸,左右焦點F1,F(xiàn)2,離心率e=
1
2

(1)求橢圓E的方程;
(2)直線l過橢圓右焦點且斜率為1與橢圓交于AB兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等比數(shù)列,且a2=4,a11=8,則log2a1a2…a12=
 

查看答案和解析>>

同步練習(xí)冊答案