(本題滿分12分)已知某公司生產(chǎn)某品牌服裝的年固定成本為10萬元,每生產(chǎn)一千件,需要另投入2.7萬元.設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(I)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)關(guān)系式;
(Ⅱ)年生產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
(1)
(2) 當(dāng)年產(chǎn)量為千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大,最大值為萬元
解析試題分析:解:(I)當(dāng)時,;
當(dāng)時,.
∴ 年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)關(guān)系式為
…………………6分
(Ⅱ)當(dāng)時,由,
即年利潤在上單增,在上單減
∴ 當(dāng)時,取得最大值,且(萬元).
當(dāng)時,,僅當(dāng)時取“=”
綜上可知,當(dāng)年產(chǎn)量為千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大,最大值為萬元. …………………12分
考點:本試題考查了函數(shù)模型在實際生活中的的運(yùn)用。
點評:解決應(yīng)用題,首先是審清題意,然后利用已知的關(guān)系式表述出利潤函數(shù):收入-成本=利潤。將實際問題轉(zhuǎn)換為代數(shù)式,然后利用函數(shù)的性質(zhì),或者均值不等式來求解最值,但是要注明定義域,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?
②問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù),
(1)若在上的最大值為,求實數(shù)的值;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實數(shù),曲線 上是否存在兩點,使得是以(為坐標(biāo)原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)
已知函數(shù)
(1)若對一切實數(shù)恒成立,求實數(shù)的取值范圍.
(2)求在區(qū)間上的最小值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是定義在上的偶函數(shù),當(dāng)時, 。
(1)用分段函數(shù)形式寫出在上的解析式;
(2)畫出函數(shù)的大致圖象;并根據(jù)圖像寫出的單調(diào)區(qū)間;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com