已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為
1
3

(Ⅰ)求橢圓的標準方程;
(Ⅱ)在橢圓上任取一點P,過P點做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運動時,求線段PQ的中點M的軌跡方程.
(Ⅰ)由題意知,2a=12,
c
a
=
1
3
,故a=6,c=2,
∴b2=a2-c2=32,
故所求橢圓的方程為:
x2
36
+
y2
32
=1

(Ⅱ)設(shè)線段PQ的中點為M(x,y),
點P的坐標是(x0,y0),
那么:
x0=2x
y0=y
,
由點P在橢圓上,得
4x2
36
+
y2
32
=1
,即
y2
32
+
x2
9
=1
,
∴線段PQ中點M的軌跡方程是
y2
32
+
x2
9
=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過雙曲線
x2
3
-y2=1
的右焦點F2,作傾斜角為
π
4
的直線交雙曲線于A、B兩點,
求:(1)|AB|的值;
(2)△F1AB的周長(F1為雙曲線的左焦點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點,滿足|
F1Q
|=2a.點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足
PT
TF2
=0
,|
TF2
|≠0.
(1)求證:|PQ|=|PF2|;
(2)求點T的軌跡C的方程;
(3)若橢圓的離心率e=
3
2
,試判斷軌跡C上是否存在點M,使△F1MF2的面積S=b2,若存在,請求出∠F1MF2的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AB是過拋物線x2=y的焦點一條弦,若AB的中點到x軸的距離為1,則弦AB的長度為(  )
A.
5
2
B.
5
4
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點M(1,1)作一直線與橢圓
x2
9
+
y2
4
=1相交于A,B兩點,若M點恰好為弦AB的中點,則AB所在直線的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2

(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N(M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(
2
+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓
x2
4
+
y2
a2
=1與雙曲線
x2
a
-
y2
2
=1有相同的焦點,則a的值是( 。
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),經(jīng)過點(3,-2)與向量(-1,1)平行的直線l交橢圓C于A,B兩點,交x軸于M點,又
AM
=2
MB

(Ⅰ)求橢圓C長軸長的取值范圍;
(Ⅱ)若|
AB
|=
3
2
2
,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案