某醫(yī)院有內(nèi)科醫(yī)生5名,外科醫(yī)生4名,現(xiàn)要派4名醫(yī)生參加賑災(zāi)醫(yī)療隊(duì),
(1)一共有多少種選法?
(2)其中某內(nèi)科醫(yī)生必須參加,某外科醫(yī)生因故不能參加,有幾種選法?
(3)內(nèi)科醫(yī)生和外科醫(yī)生都要有人參加,有幾種選法?
考點(diǎn):排列、組合及簡單計(jì)數(shù)問題
專題:應(yīng)用題,排列組合
分析:(1)所有醫(yī)生共9人,從這7人中在任意選出4人即可;
(2)除去某個(gè)內(nèi)科醫(yī)生和某外科醫(yī)生,還有7人,從這7人中在任意選出4人即可;
(3)所有的選法共有C94種,從中減去只有內(nèi)科醫(yī)生和外科醫(yī)生的選法,運(yùn)算求得結(jié)果.
解答: 解:(1)所有醫(yī)生共9人,從這7人中在任意選出4人,共有C94=126(種);
(2)所有醫(yī)生共9人,先選上某個(gè)內(nèi)科醫(yī)生,去掉某外科醫(yī)生,還有7人,
從這7人中在任意選出4人,共有C74=35(種);
(3)由題意,所有的選法共有C94種,從中減去只有內(nèi)科醫(yī)生和外科醫(yī)生的選法,
故滿足條件的選法共有C94-C54-C44=120(種).
點(diǎn)評:本題考查組合知識,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a+|b|sinx,(a,b∈R),x∈R,且函數(shù)f(x)的最大值為3,最小值為1.
(1)求a,b的值;
(2)(。┣蠛瘮(shù)f(-x)的單調(diào)遞增區(qū)間;
(ⅱ)求函數(shù)f(x)的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知函數(shù)f(x)=lnx+a,g(x)=ax,a∈R.
(1)若a=1,設(shè)函數(shù)F(x)=
f(x)
g(x)
,求F(x)的極大值;
(2)設(shè)函數(shù)G(x)=f(x)-g(x),討論G(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=(1+x)n=C
 
0
n
+C
 
1
n
x+C
 
2
n
x2+…+C
 
n-1
n
xn-1+C
 
n
n
xn(n是正整數(shù)),利用賦值法解決下列問題:
(1)求S1=C
 
0
n
+C
 
1
n
+C
 
2
n
+…+C
 
n
n
;
(2)n為偶數(shù)時(shí),求S2=C
 
1
n
+C
 
3
n
+C
 
5
n
+…+C
 
n-1
n

(3)n是3的倍數(shù)時(shí),求S3=C
 
2
n
+C
 
5
n
+C
 
8
n
+…+C
 
n-1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a3=8,a6=17.
(1)求{an}的通項(xiàng)公式;
(2)各項(xiàng)均為正數(shù)的等比數(shù)列{bn}滿足b1=a1,b3=a3,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=10,an+1=9Sn+10,設(shè)Tn是數(shù)列{
3
(lgan)(lgan+1)
}的前n項(xiàng)和,求使Tn
1
4
(m2-5m)對所有的n∈N成立的最大正整數(shù)m的值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C所對的邊,若tanA+tanB=
2sinC
cosA

(1)求角B的大;
(2)已知
a
c
+
c
a
=3
①求sinAsinC的值;
②求
1
tanA
+
1
tanC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖,△ABC是邊長為1的正三角形,PA⊥平面ABC,且PA=
6
4
,A點(diǎn)關(guān)于平面PBC的對稱點(diǎn)為A′,連線AA′交面PBC于O點(diǎn).
(Ⅰ)求證:PO⊥BC;
(Ⅱ)求線段AA′的長度;
(Ⅲ)求二面角A′-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為2的正方體ABCD-A1B1C1D1中,E為C1D1的中點(diǎn).
①求證:AE⊥DA1;
②求異面直線AE與CC1所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案