在銳角△ABC中,角A、B、C所對的邊分別是a、b、c、,S是該三角形的面積,且4數(shù)學(xué)公式
(I)求角B.
(II)若數(shù)學(xué)公式,求b的值.

解:(I)∵4
∴4sinB+2cos2(A+C)=2sinB(1+sinB)+2cos2B-1=2sinB+1=1+
∴sinB=
∵B為銳角
∴B=60°
(II)∵S=acsinB=2c×=5
∴c=5
∴b===
分析:(I)利用二倍角公式對題設(shè)中等式化簡整理求得sinB的值,進而求得B.
(II)先利用三角形面積公式求得c,進而利用余弦定理求得b.
點評:本題主要考查了余弦定理的應(yīng)用和二倍角的化簡求值.考查了學(xué)生綜合分析問題和解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大。
(Ⅱ)當c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范圍;
(2)若a=
3
,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函數(shù)f(x)的表達式,并指出f(x)的單調(diào)遞減區(qū)間;
(2)在銳角△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大。
(Ⅱ)求函數(shù)f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)當c=2a,且b=3
7
時,求a及△ABC的面積.

查看答案和解析>>

同步練習冊答案