在數(shù)列中,前n項(xiàng)和為
,且
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列
前n項(xiàng)和為
,比較
與2的大�。�
(Ⅰ);(Ⅱ)
.
解析試題分析:(Ⅰ)已知前項(xiàng)和公式
求
,則
.由此可得數(shù)列
的通項(xiàng)公式.
(Ⅱ)由等差數(shù)列與等比數(shù)列的積或商構(gòu)成的新數(shù)列,求和時(shí)用錯(cuò)位相消法.在本題中用錯(cuò)位相消法可得:.由于
,所以
.
試題解析:(Ⅰ)當(dāng)時(shí),
;
當(dāng)時(shí),
,經(jīng)驗(yàn)證,
滿足上式.
故數(shù)列的通項(xiàng)公式
. 6分
(Ⅱ)可知,
則,
兩式相減,得,
所以. 12分
考點(diǎn):1、等差數(shù)列與等比數(shù)列;2、錯(cuò)位相消法求和;3、比較大小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,=an+1-
n2-n-
,n∈N*.
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對一切正整數(shù)n,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
,
.
(1)求證:數(shù)列是等差數(shù)列,并求
的通項(xiàng)公式;
(2)設(shè),
,試比較
與
的大�。�
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為0的等差數(shù)列的前n項(xiàng)和為
,
,且
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列為等差數(shù)列,且
;數(shù)列
的前n項(xiàng)和為
,且
。
(I)求數(shù)列,
的通項(xiàng)公式;
(II)若,
為數(shù)列
的前n項(xiàng)和,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的各項(xiàng)均為正數(shù),
,
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)
.證明:
為等差數(shù)列,并求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項(xiàng)和為
,且
,數(shù)列
滿足
,且
.
(Ⅰ)求數(shù)列、
的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前
項(xiàng)和記為
,
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)等差數(shù)列的前
項(xiàng)和
有最大值,且
,又
、
、
成等比數(shù)列,求
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com