【題目】a,b為正實(shí)數(shù),若函數(shù)f(x)=ax3+bx+ab﹣1是奇函數(shù),則f(2)的最小值是(
A.2
B.4
C.8
D.16

【答案】C
【解析】解:因?yàn)閒(x)=ax3+bx+ab﹣1是奇函數(shù),

所以 ,即 ,

由a,b為正實(shí)數(shù),所以b= >0,

所以f(x)=ax3+ x,

則f(2)=8a+ ≥2 =8(當(dāng)且僅當(dāng)8a= ,即a= 時(shí)取等號(hào)),

故選:C.

【考點(diǎn)精析】利用函數(shù)奇偶性的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)幾何體的三視圖及其尺寸(單位:cm),則該幾何體的表面積和體積分別為(
A.24πcm2 , 12πcm3
B.15πcm2 , 12πcm3
C.24πcm2 , 36πcm3
D.15πcm2 , 36πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,已知△A′DE(A′平面ABC)是△ADE繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,有下列命題: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱錐A′﹣DEF的體積最大值為 a3;
④動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上;
⑤二面角A′﹣DE﹣F大小的范圍是[0, ].
其中正確的命題是(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x)的定義域?yàn)椋ī乤,0)∪(0,a)(0<a<1),其圖象上任意一點(diǎn)P(x,y)滿足x2+y2=1,則給出以下四個(gè)命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域?yàn)椋╝2 , 1)其中正確的命題個(gè)數(shù)為(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證:
(2)設(shè)c=(0,1),若 + =c,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為 ,且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B. (Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線l不過點(diǎn)M,求證:直線MA、MB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是被嚴(yán)重破壞的頻率分布表和頻率分布直方圖,根據(jù)殘表和殘圖,則 p= , q=

分?jǐn)?shù)段

頻數(shù)

[60,70)

p

[70,80)

90

[80,90)

60

[90,100]

20

q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的奇偶性;
(2)用單調(diào)性的定義證明f(x)為R上的增函數(shù);
(3)若對(duì)任意的t∈R,不等式f(mt2+1)+f(1﹣mt)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案