已知A={a,
b
a
,1},B={a2,a+b,0},若A=B,求a2008+b2008
考點(diǎn):集合的相等
專(zhuān)題:集合
分析:根據(jù)已知條件可求出a,b,這樣便可計(jì)算出結(jié)果.
解答: 解:由已知條件知:
b
a
=0
a=a2
1=a+b
,或
b
a
=0
a=a+b
1=a2
,解得:a=±1,b=0,a=1時(shí)不滿(mǎn)足集合元素的互異性,∴a=-1;
∴a2008+b2008=1.
點(diǎn)評(píng):考查集合相等的概念,在寫(xiě)出A中元素和B中元素對(duì)應(yīng)相等時(shí),不要漏了可能的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+x2(a為常數(shù)).若存在x∈[1,e],使得f(x)≤(a+2)x成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試描述判斷圓(x-a)2+(y-b)2=r2和直線(xiàn)Ax+By+C=0位置關(guān)系的算法,畫(huà)出流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖①,△BCD內(nèi)接于直角梯形A1A2A3D,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個(gè)三棱錐ABCD,如圖②.

(1)求證:AB⊥CD;
(2)求直線(xiàn)BD和平面ACD所成的角的正切值;
(3)求四面體ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
第一列第二列第三列
第一行123
第二行456
第三行798
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足:bn=|an-9|,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為三角形內(nèi)角A,B,C所對(duì)的邊,并滿(mǎn)足S=
1
4
(b2+c2-a2).
(1)求角A的大小;
(2)若a=2,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x+4,    x≤0
x2-2x,0<x≤4
-x+2,  x>4

(1)求f{f[f(5)]}的值;
(2)畫(huà)出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以線(xiàn)段AB,AC為鄰邊的平行四邊形的兩條對(duì)角線(xiàn)的長(zhǎng);
(2)求
AB
AC
夾角的余弦值;
(3)是否存在實(shí)數(shù)t滿(mǎn)足(
AB
-t
OC
)•
OC
=
OA
OC
,若存在,求t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)=
log
1
2
|x-2|   ,  x≠2
1,      x=2
,若關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案