若函數(shù)f(x)=ln(aex-x-3)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
(e2,+∞)
(e2,+∞)
分析:f(x)=ln(aex-x-3)的定義域?yàn)镽等價(jià)于aex-x-3>0的解集是R,由此能求出實(shí)數(shù)a的范圍.
解答:解:∵f(x)=ln(aex-x-3)的定義域?yàn)镽,
∴aex-x-3>0的解集是R,即a>
x+3
ex
恒成立.
設(shè)g(x)=
x+3
ex
,則g'(x)=
-x-2
e2
,當(dāng)x<-2時(shí)g'(x)>0,當(dāng)x>-2時(shí)g'(x)<0,
故g(x)在(-∞,-2)是增函數(shù),在(-2,+∞)上是減函數(shù),
故當(dāng)x=-2時(shí),g(x)取得最大值g(-2)=e2
∴a>e2
故答案為:(e2,+∞).
點(diǎn)評:本題考查對數(shù)函數(shù)的定義域,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ln(x2-2ax+3)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍為
a≥
3
或a≤-
3
a≥
3
或a≤-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)若函數(shù)f(x)=ln(x2+ax+1)是偶函數(shù),則實(shí)數(shù)a的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=ln(x+1)+mx,當(dāng)x=0時(shí),函數(shù)f(x)取得極大值.
(1)求實(shí)數(shù)m的值;
(2)已知結(jié)論:若函數(shù)f(x)=ln(x+1)+mx在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,且a>-1,則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.試用這個(gè)結(jié)論證明:若-1<x1<x2,函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,則對任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正數(shù)λ1,λ2,…,λn,滿足λ12+…+λn=1,求證:當(dāng)n≥2,n∈N時(shí),對任意大于-1,且互不相等的實(shí)數(shù)x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ln(2x+a)與g(x)=bex+1的圖象關(guān)于直線y=x對稱,則a+2b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ln(x+
a
x
-4)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,4]
B、[0,4]
C、(-∞,4)
D、(0,4)

查看答案和解析>>

同步練習(xí)冊答案