【題目】設(shè)二次函數(shù)滿足下列條件:當(dāng)時,的最小值為0,且成立;當(dāng)時,恒成立.
(1)求的解析式;
(2)若對,不等式恒成立、求實數(shù)的取值范圍;
(3)求最大的實數(shù),使得存在實數(shù),只要當(dāng)時,就有成立.
【答案】(1);(2);(3)9.
【解析】
(1)由知函數(shù)圖象的對稱軸是,最小值為0,因此頂點為,這樣函數(shù)解析式可寫為,在不等式令得,從而有,由此可求得;
(2)不等式化為,當(dāng)時,應(yīng)有,當(dāng),應(yīng)有.由此可得的取值范圍;
(3)由,即的圖象與直線切于點,因此把的圖象向右平移,就有一部分滿足,由此可找到的最大值.
解:(1)由題意,函數(shù)的頂點坐標(biāo)為,
解析式可設(shè)為,
又,∴,∴,∴,
經(jīng)檢驗,當(dāng)時,恒成立,
∴函數(shù)解析式為.
(2)不等式變形為:,
令,對稱軸為,
當(dāng)即時,在上單調(diào)增,∴,解得,∴.
當(dāng)時,,解得,
∴.
綜上所述.
(本小問也可用分離參數(shù)的方法來求)
(3)當(dāng)時,與相切于點,向右平移的過程中,
令與相交于兩點和(在左),
由圖可知,當(dāng)點與重合時,點的橫坐標(biāo)即為的最大值.
此時,得或-4,∴.
消去得:,解得或9,
∴的最大值為9.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長為a的正三角形,且平面PAB⊥平面ABCD,已知點M是PD的中點.
(1)證明:PB∥平面AMC;
(2)求直線BD與平面AMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且拋物線的焦點恰好是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作直線與橢圓交于,兩點,點滿足(為坐標(biāo)原點),求四邊形面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機數(shù):
據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù),若同時滿足下列條件:
①在內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間,使在上的值域為;那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)恰有3個零點,則實數(shù)的取值范圍為( )
A. B. C. D.
【答案】A
【解析】,在上單調(diào)遞減.若,則在上遞增,那么零點個數(shù)至多有一個,不符合題意,故.故需當(dāng)時,且,使得第一段有一個零點,故.對于第二段, ,故需在區(qū)間有兩個零點, ,故在上遞增,在上遞減,所以,解得.綜上所述,
【點睛】本小題主要考查函數(shù)的圖象與性質(zhì),考查含有參數(shù)的分段函數(shù)零點問題的求解策略,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,極值,最值等基本問題.其中用到了多種方法,首先對于第一段函數(shù)的分析利用了分離常數(shù)法,且直接看出函數(shù)的單調(diào)性.第二段函數(shù)利用的是導(dǎo)數(shù)來研究圖像與性質(zhì).
【題型】單選題
【結(jié)束】
13
【題目】設(shè), 滿足約束條件,則的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),曲線在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為-12.
(1)求函數(shù)的解析式;
(2)用列表法求函數(shù)在上的單調(diào)增區(qū)間、極值、最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是雙曲線的左頂點、右焦點,過的直線與的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點.若,則的離心率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com