【題目】如圖,在四邊形中,,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面;
(2)若為的中點(diǎn),二面角等于60°,求直線與平面所成角的正弦值.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;
(2)由題意知,,取的中點(diǎn),連接,易知兩兩垂直,以為原點(diǎn)建立如圖所示的坐標(biāo)系,設(shè),平面的一個(gè)法向量為,求出向量,則向量所成角的余弦值的絕對(duì)值即為所求.
(1)證明:因?yàn)?/span>,
所以平面,
又因?yàn)?/span>平面,所以.
又因?yàn)?/span>,
所以平面.
(2)因?yàn)?/span>,
所以是二面角的平面角,即,
在中,,
取的中點(diǎn),連接,因?yàn)?/span>,
所以,由(1)知,平面,為的中位線,
所以,即兩兩垂直,
以為原點(diǎn)建立如圖所示的坐標(biāo)系,設(shè),則
,
,設(shè)平面的一個(gè)法向量為,
則由得令,得,
所以,
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若在 處導(dǎo)數(shù)相等,證明: ;
(2)若對(duì)于任意 ,直線 與曲線都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過(guò)7人”.已知過(guò)去10日,、、三地新增疑似病例數(shù)據(jù)信息如下:
地:總體平均數(shù)為3,中位數(shù)為4;
地:總體平均數(shù)為2,總體方差為3;
地:總體平均數(shù)為1,總體方差大于0;
則、、三地中,一定沒(méi)有發(fā)生大規(guī)模群體感染的是__________地.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓上的一點(diǎn),F為橢圓的右焦點(diǎn),且垂直于x軸,不過(guò)原點(diǎn)O的直線交橢圓于A,B兩點(diǎn),線段的中點(diǎn)M在直線上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)的面積最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)P的極坐標(biāo)為,Q為曲線上的動(dòng)點(diǎn),求的中點(diǎn)M到曲線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為的重心G.
(1)已知,證明:平面平面;
(2)若三棱柱的側(cè)棱與底面所成角的正切值為,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知圓和圓的極坐標(biāo)方程分別是和.
(1)求圓和圓的公共弦所在直線的直角坐標(biāo)方程;
(2)若射線:與圓的交點(diǎn)為O、P,與圓的交點(diǎn)為O、Q,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱中,,,,,點(diǎn)在線段上.
(1)若,求異面直線和所成角的余弦值;
(2)若直線與平面所成角為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱錐的底面邊長(zhǎng)為高為其內(nèi)切球與面切于點(diǎn),球面上與距離最近的點(diǎn)記為,若平面過(guò)點(diǎn),且與平行,則平面截該正四棱錐所得截面的面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com