【題目】已知橢圓 C: 的焦距為2,且過(guò)點(diǎn),右焦點(diǎn)為.設(shè)A,B 是C上的兩個(gè)動(dòng)點(diǎn),線段 AB 的中點(diǎn)M 的橫坐標(biāo)為,線段AB的中垂線交橢圓C于P,Q 兩點(diǎn).

(1)求橢圓 C 的方程;

(2)設(shè)M點(diǎn)縱坐標(biāo)為m,求直線PQ的方程,并求的取值范圍.

【答案】(1);(2).

【解析】

(1)利用橢圓C:(a>b>0)的焦距為2,且過(guò)點(diǎn)(1,),建立方程組,求出a,b,即可求橢圓C的方程;

(2)分類(lèi)討論,求出直線PQ的方程,與橢圓方程聯(lián)立,結(jié)合向量的數(shù)量積,在橢圓的內(nèi)部,利用換元法,即可求的取值范圍.

(1) 因?yàn)闄E圓 的焦距為 ,且過(guò)點(diǎn)K ,所以,,所以,于是 ,,所以橢圓 的方程為

(2) 由題意,當(dāng)直線 垂直于 軸時(shí),直線 方程為 ,此時(shí) ,,

當(dāng)直線 不垂直于 軸時(shí),設(shè)直線 的斜率為 ,,由線段 的中點(diǎn) 的橫坐標(biāo)為 ,得 , ,故 .此時(shí),直線 斜率為 , 的直線方程為 ,即 聯(lián)立 消去 ,整理得 設(shè) ,所以 ,

于是

由于 在橢圓的內(nèi)部,故 ,令 ,

.又 ,所以 .綜上, 的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某海礁A處有一風(fēng)暴中心,距離風(fēng)暴中心A正東方向200km的B處有一艘輪船,正以北偏西a(a為銳角)角方向航行,速度為40km/h.已知距離風(fēng)暴中心180km以?xún)?nèi)的水域受其影響.

(1)若輪船不被風(fēng)暴影響,求角α的正切值的最大值?

(2)若輪船航行方向?yàn)楸逼?5°,求輪船被風(fēng)暴影響持續(xù)多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: =1的右焦點(diǎn)F,過(guò)焦點(diǎn)F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請(qǐng)問(wèn)△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請(qǐng)求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)中的秦九韶算法,執(zhí)行該程序框圖,則輸出的結(jié)果S表示的值為(

A.a0+a1+a2+a3
B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3
D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n;
(2)設(shè)bn= +(﹣1)na (n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin2ωx(ω>0),將y=f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后,若所得圖象與原圖象重合,則ω的最小值等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.

(1)求證:AC⊥PB;
(2)若PB=PC= ,問(wèn)在側(cè)棱PB上是否存在一點(diǎn)M,使得二面角M﹣AD﹣B的余弦值為 ?若存在,求出 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱A1B1的中點(diǎn),則直線AE與平面BDD1B1所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點(diǎn)數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱(chēng)k為你的幸運(yùn)數(shù)字.
(1)求你的幸運(yùn)數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒(méi)找到你的幸運(yùn)數(shù)字則記0分,求得分X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案