精英家教網 > 高中數學 > 題目詳情

【題目】已知復數,其中為虛數單位,對于任意復數,有

(1)求的值;

(2)若復數滿足,求的取值范圍;

(3)我們把上述關系式看作復平面上表示復數的點和表示復數的點之間的一個變換,問是否存在一條直線,若點在直線上,則點仍然在直線上?如果存在,求出直線的方程,否則,說明理由.

【答案】(1)2;(2);(3)存在,直線方程,理由見解析

【解析】

(1)利用復數的模的性質即可得解;

(2)利用復數的幾何意義即可得解;

(3)設,由,得,① 設存在直線,則直線一定過原點,故設直線的方程為,② ,聯(lián)立化簡即可得解.

(1)因為,所以

,所以,

;

(2)由,得復數的軌跡是點,的中垂線,

,

所以

,

的取值范圍為;

(3)設,

,得,①

設存在直線滿足題意,則直線一定過原點,故設直線的方程為,②

由題意知:把①代入②可得,③

把②代入③可得,解得,

故存在直線,其方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于以,為公共焦點的橢圓和雙曲線,設是它們的一個公共點,,分別為它們的離心率.,則的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)某農產品近幾年的產量統(tǒng)計如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據表中數據,建立關于的線性回歸方程

(Ⅱ)根據線性回歸方程預測2019年該地區(qū)該農產品的年產量.

附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數據:,計算結果保留小數點后兩位)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的上頂點為點,右焦點為.延長交橢圓于點,且滿足.

(1)試求橢圓的標準方程;

(2)過點作與軸不重合的直線和橢圓交于兩點,設橢圓的左頂點為點,且直線分別與直線交于兩點,記直線的斜率分別為,則之積是否為定值?若是,求出該定值;若不是,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是相似的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點,橢圓的長軸長是4,橢圓長軸長是2,點,分別是橢圓的左焦點與右焦點.

1)求橢圓的方程;

2)過的直線交橢圓于點,,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知下列各組命題,其中的充分必要條件的是(

;有兩個不同的零點

;是偶函數;

;

;,

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某摸球游戲的規(guī)則如下:從裝有5個大小、形狀完全相同的小球的盒中摸球(其中3個紅球、2個黃球),每次摸一個球記錄顏色并放回,若摸出紅球記1分,摸出黃球記2分.

1)求摸球三次得分為5的概率;

2)設ξ為摸球三次所得的分數,求隨機變量ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《周髀算經》中有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數列,冬至、立春、春分日影長之和為31.5尺,前九個節(jié)氣日影長之和為85.5尺,則小滿日影長為(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

同步練習冊答案