如圖,在四面體ABOC中,OCOA,OCOB,∠AOB=120°,且OAOBOC=1.

(Ⅰ)求二面角OABC的平面角的正切值;

(Ⅱ)設(shè)PAC的中點(diǎn).證明:在AB上存在一點(diǎn)Q,使PQOA,并計(jì)算的值.

答案:
解析:

  解:(Ⅰ)取AB的中點(diǎn)D,連接OD,CD,則由于OA=OB,所以O(shè)D⊥AB,

  又由于OC⊥OA,OC⊥OB,所以O(shè)C⊥平面OAB,所以O(shè)C⊥AB

  又因?yàn)镺D∩OC=O,所以AB⊥平面OCD,所以AB⊥CD,

  所以∠ODC就是所求的二面角O-AB-C的平面角

  又因?yàn)椤?I>AOB=120°,且OAOBOC=1,在直角△ODA中,

  ∠OAD=30°,所以O(shè)D=,

  所以tan∠ODC=,所以二面角OABC的平面角的正切值為2.

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設(shè)為P為AC的中點(diǎn),Q為AB上一點(diǎn),使PQ⊥OA,并計(jì)算
ABAQ
的值;
(Ⅱ)求二面角O-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(I)設(shè)P為線段AC的中點(diǎn),試在線段AB上求一點(diǎn)E,使得PE⊥OA;
(II)求二面角O-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
①設(shè)P為AC的中點(diǎn).證明:在AB上存在一點(diǎn)Q,使PQ⊥OA,并計(jì)算
ABAQ
的值.
②求四面體PAOB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
(1)求四面體ABOC的體積.
(2)設(shè)P為AC的中點(diǎn),證明:在AB上存在一點(diǎn)Q,使PQ⊥OA,并計(jì)算
ABAQ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省上學(xué)期高二期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,在四面體ABOC中,OCOAOCOB,∠AOB=120°,且OAOBOC=1.

(1)設(shè)PAC的中點(diǎn).證明:在AB上存在一點(diǎn)Q,使PQOA,并計(jì)算的值;

(2)求二面角OACB的平面角的余弦值.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案