是直線的法向量,AB為兩個定點,為一動點,若點P滿足:,則動點P的軌跡是(    )

A.直線    B.拋物線    C.橢圓    D.雙曲線

 

答案:A
解析:

解:是向量上的射影長,即P點到直線l的距離,由拋物線的定義知,軌跡為拋物線,選A.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

是直線的法向量,A,B為兩個定點,為一動點,若點P滿足:,則動點P的軌跡是(    )

A.直線    B.拋物線    C.橢圓    D.雙曲線

 

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設計選修數(shù)學-2-1蘇教版 蘇教版 題型:044

u是平面α的法向量,a是直線l的方向向量,根據下列條件判斷α和l的位置關系:

(1)u=(2,2,-1),a=(-3,4,2);

(2)u=(0,2,-3),a=(0,-8,12);

(3)u=(4,1,5),a=(2,-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設a、b分別是直線l1、l2的方向向量,根據下列條件判斷l1l2的位置關系:

①a=(2,3,-1),b=(-6,-9,3);

②a=(5,0,2),b=(0,4,0);

③a=(-2,1,4),b=(6,3,3).

(2)設u、v分別是平面α、β的法向量,根據下列條件判斷α、β的位置關系:

①u=(1,-1,2),v=(3,2,-);

②u=(0,3,0),v=(0,-5,0);

③u=(2,-3,4),v=(4,-2,1).

(3)設u是平面α的法向量,a是直線l的方向向量,根據下列條件判斷α和l的位置關系:

①u=(2,2,-1),a=(-3,4,2);

②u=(0,2,-3),a=(0,-8,12);

③u=(4,1,5),a=(2,-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知直三棱柱中, , , 的交點, 若.

(1)求的長;  (2)求點到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點A到平面ABC的距離為H=||=……… 8分

(3) 設平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

同步練習冊答案