如圖所示,平面⊥平面
,
,
,四邊形
是直角梯形,
,
,
,
分別為
的中點.
(Ⅰ) 用幾何法證明:平面
;
(Ⅱ)用幾何法證明:平面
.
(1)利用三角形的中位線的性質,先證明四邊形ODBF是平行四邊形,從而可得OD∥FB,利用線面平行的判定,可以證明OD∥平面ABC;(2)利用平面ABDE⊥平面ABC,證明BD⊥平面ABC,進而可證平面ABDE;
【解析】
試題分析:(Ⅰ)證明:取中點
,連結
. ∵
是
的中點,
為
的中點,
∴且
, 又
且
,
∴,
∴四邊形是平行四邊形.
∴ 4分
又∵平面
,
平面
,
∴平面
.
6分
(Ⅱ)證明:,
為
中點,∴
, 8分
又∵面⊥面
,面
面
,
面
,
∴面
.
12分
考點:線面平行,線面垂直
點評:本題考查線面平行,考查線面垂直,考查線面角,解題的關鍵是正確運用線面平行與垂直的判定與性質,正確運用向量法求線面角.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,平面∥平面
,點A∈
,C∈
,點B∈
,D∈
,點E,F(xiàn)分別在
線段AB,CD上,且AE∶EB=CF∶FD.
(1)求證:EF∥;
(2)若E,F(xiàn)分別是AB,CD的中點,AC=4,BD=6,且AC,BD所成的角為60°,
求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com