對(duì)于簡(jiǎn)單隨機(jī)抽樣,下列說(shuō)法中正確的命題為(    )

①它要求被抽取樣本的總體的個(gè)體數(shù)有限,以便對(duì)其中各個(gè)個(gè)體被抽取的概率進(jìn)行分析  ②它是從總體中逐個(gè)地進(jìn)行抽取,以便在抽樣實(shí)踐中進(jìn)行操作  ③它是一種不放回抽樣

④它是一種等概率抽樣,不僅每次從總體中抽取一個(gè)個(gè)體時(shí),各個(gè)個(gè)體被抽取的概率相等,而且在整個(gè)抽樣過(guò)程中,各個(gè)個(gè)體被抽取的概率也相等,從而保證了這種方法抽樣的公平性

A.①②③                                B.①②④

C.①③④                                D.①②③④

 

【答案】

D

【解析】

試題分析:根據(jù)簡(jiǎn)單隨機(jī)抽樣的定義,①②③④全對(duì),故選D。

考點(diǎn):本題主要考查簡(jiǎn)單隨機(jī)抽樣的概念、方法。

點(diǎn)評(píng):理解好簡(jiǎn)單隨機(jī)抽樣的定義。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于簡(jiǎn)單隨機(jī)抽樣,下列說(shuō)法中正確的命題為( 。
①它要求被抽取樣本的總體的個(gè)數(shù)有限,以便對(duì)其中各個(gè)個(gè)體被抽取的概率進(jìn)行分析;
②它是從總體中逐個(gè)地進(jìn)行抽取,以便在抽取實(shí)踐中進(jìn)行操作;
③它是一種不放回抽樣;
④它是一種等概率抽樣,不僅每次從總體中抽取一個(gè)個(gè)體時(shí),各個(gè)個(gè)體被抽取的概率相等,而且在整個(gè)抽樣檢查過(guò)程中,各個(gè)個(gè)體被抽取的概率也相等,從而保證了這種方法抽樣的公平性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于簡(jiǎn)單隨機(jī)抽樣,下列說(shuō)法中正確的命題為( 。
①它要求被抽取樣本的總體的個(gè)數(shù)有限,以便對(duì)其中各個(gè)個(gè)體被抽取的概率進(jìn)行分析;
②它是從總體中逐個(gè)地進(jìn)行抽取,以便在抽取實(shí)踐中進(jìn)行操作;
③它是一種不放回抽樣;
④它是一種等概率抽樣,不僅每次從總體中抽取一個(gè)個(gè)體時(shí),各個(gè)個(gè)體被抽取的概率相等,而且在整個(gè)抽樣檢查過(guò)程中,各個(gè)個(gè)體被抽取的概率也相等,從而保證了這種方法抽樣的公平性.
A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于簡(jiǎn)單隨機(jī)抽樣,下列說(shuō)法中正確的命題為( 。
①它要求被抽取樣本的總體的個(gè)數(shù)有限,以便對(duì)其中各個(gè)個(gè)體被抽取的概率進(jìn)行分析;
②它是從總體中逐個(gè)地進(jìn)行抽取,以便在抽取實(shí)踐中進(jìn)行操作;
③它是一種不放回抽樣;
④它是一種等概率抽樣,不僅每次從總體中抽取一個(gè)個(gè)體時(shí),各個(gè)個(gè)體被抽取的概率相等,而且在整個(gè)抽樣檢查過(guò)程中,各個(gè)個(gè)體被抽取的概率也相等,從而保證了這種方法抽樣的公平性.
A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 統(tǒng)計(jì)》2013年單元測(cè)試卷B(解析版) 題型:選擇題

對(duì)于簡(jiǎn)單隨機(jī)抽樣,下列說(shuō)法中正確的命題為( )
①它要求被抽取樣本的總體的個(gè)數(shù)有限,以便對(duì)其中各個(gè)個(gè)體被抽取的概率進(jìn)行分析;
②它是從總體中逐個(gè)地進(jìn)行抽取,以便在抽取實(shí)踐中進(jìn)行操作;
③它是一種不放回抽樣;
④它是一種等概率抽樣,不僅每次從總體中抽取一個(gè)個(gè)體時(shí),各個(gè)個(gè)體被抽取的概率相等,而且在整個(gè)抽樣檢查過(guò)程中,各個(gè)個(gè)體被抽取的概率也相等,從而保證了這種方法抽樣的公平性.
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案