【題目】在中學(xué)生綜合素質(zhì)評價(jià)某個(gè)維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

表一:男生

男生

等級

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

5

表二:女生

女生

等級

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

3

(1)求,的值;

(2)從表一、二中所有尚待改進(jìn)的學(xué)生中隨機(jī)抽取3人進(jìn)行交談,記其中抽取的女生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望;

(3)由表中統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

男生

女生

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

45

參考公式:,其中.

參考數(shù)據(jù):

0.01

0.05

0.01

2.706

3.841

6.635

【答案】(1);(2)詳見解析;(3)沒有.

【解析】

(1)設(shè)從高一年級男生中抽出m人,利用分層抽樣的性質(zhì)列方程就出m,從而能求出x,y.(2)表一、二中所有尚待改進(jìn)的學(xué)生共7人,其中女生有2人,取出3人中有女生的人數(shù)可能為0,1,2,利用組合求其概率即可(3)根據(jù)列聯(lián)表直接計(jì)算即可根據(jù)結(jié)果得出結(jié)論.

(1)設(shè)從高一年級男生中抽取人,則

解得,則從女生中抽取20人

所以,.

(2) 表一、二中所有尚待改進(jìn)的學(xué)生共7人,其中女生有2人,則的所有可能的取值為0,1,2.

,,

.則隨機(jī)變量的概率分布列為:

0

1

2

所以數(shù)學(xué)期望為.

(3)列聯(lián)表如下:

男生

女生

總計(jì)

優(yōu)秀

15

15

30

非優(yōu)秀

10

5

15

總計(jì)

25

20

45

,

因?yàn)?/span>,

所以沒有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題方程表示焦點(diǎn)在軸上的雙曲線;命題若存在,使得成立.

(1)如果命題是真命題,求實(shí)數(shù)的取值范圍;

(2)如果為假命題,為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個(gè)人購買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如表的數(shù)據(jù)資料:

使用年限x

2

3

4

5

6

總費(fèi)用y

2.2

3.8

5.5

6.5

7.0

1)求線性回歸方程

2)估計(jì)使用年限為12年時(shí),使用該款車的總費(fèi)用是多少萬元?

線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

求函數(shù)的單調(diào)區(qū)間和極值;

設(shè),且是曲線上的任意兩點(diǎn),若對任意的,直線AB的斜率恒大于常數(shù)m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙一流大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:

1)將同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,求這100人月薪收入的樣本平均數(shù);

2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會(huì),并收取一定的活動(dòng)費(fèi)用,有兩種收費(fèi)方案:

方案一:設(shè)區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;

方案二:每人按月薪收入的樣本平均數(shù)的收;

用該校就業(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝公司要對某種工藝品深加工,已知每個(gè)工藝品進(jìn)價(jià)為20元,每個(gè)的加工費(fèi)為n元,銷售單價(jià)為x.根據(jù)市場調(diào)查,須有,,同時(shí)日銷售量m(單位:個(gè))與成正比.當(dāng)每個(gè)工藝品的銷售單價(jià)為29元時(shí),日銷售量為1000個(gè).

1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;

2)當(dāng)每個(gè)工藝品的加工費(fèi)用為5元時(shí),要使該公司的日銷售利潤為100萬元,試確定銷售單價(jià)x的值.(提示:函數(shù)的圖象在上有且只有一個(gè)公共點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在實(shí)數(shù)t,使得任給,不等式恒成立,則m的最大值為(

A.3B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓心為點(diǎn),點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)在圓上運(yùn)動(dòng).

l)求動(dòng)點(diǎn)的軌跡的方程;

2)若為曲線上任意一點(diǎn),|的最大值;

3)經(jīng)過點(diǎn)且斜率為的直線交曲線兩點(diǎn)在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在區(qū)間D上的函數(shù):若存在閉區(qū)間和常數(shù)e,使得對任意,都有,且對任意,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

1)判斷函數(shù)是否為R上的平底型函數(shù)?并說明理由;

2)若函數(shù)是區(qū)間上的平底型函數(shù),求mn的值.

查看答案和解析>>

同步練習(xí)冊答案