過直線l外一點(diǎn)P引兩條直線PA、PB,和直線l分別交于A、B兩點(diǎn),求證:三直線PA、PB、l共面.

答案:
解析:

  

  思路分析:根據(jù)確定平面的條件先確定一個(gè)平面,然后再證其他直線也在這平面內(nèi).

  溫馨提示:證明點(diǎn)、線共面問題一般的方法是,先由一部分元素確定一個(gè)平面,再證明其他元素也在這個(gè)平面內(nèi).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
1
-1
,屬于特征值λ2=4的一個(gè)特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2
.點(diǎn)
P為曲線C上的動點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(6,0),且與直線y=1相切,從圓C外一點(diǎn)P(a,b)向該圓引切線PT,T為切點(diǎn),
(Ⅰ)求圓C的方程;
(Ⅱ)已知點(diǎn)Q(2,-2),且|PT|=|PQ|,試判斷點(diǎn)P是否總在某一定直線l上,若是,求出l的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線l與x軸的交點(diǎn)為F,點(diǎn)M,N是直線x=6上兩動點(diǎn),且以M,N為直徑的圓E過點(diǎn)F,圓E是否過定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省廣州市執(zhí)信中學(xué)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(6,0),且與直線y=1相切,從圓C外一點(diǎn)P(a,b)向該圓引切線PT,T為切點(diǎn),
(Ⅰ)求圓C的方程;
(Ⅱ)已知點(diǎn)Q(2,-2),且|PT|=|PQ|,試判斷點(diǎn)P是否總在某一定直線l上,若是,求出l的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線l與x軸的交點(diǎn)為F,點(diǎn)M,N是直線x=6上兩動點(diǎn),且以M,N為直徑的圓E過點(diǎn)F,圓E是否過定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州市高三第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為,屬于特征值λ2=4的一個(gè)特征向量為.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.點(diǎn)
P為曲線C上的動點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案