精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點.
(Ⅱ)過圓心于點,當變化時,求點的軌跡的方程.
(Ⅲ)直線與點的軌跡交于點,與圓交于點,是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.

(Ⅰ)見解析;(Ⅱ)軌跡的方程為.
(Ⅲ)存在,使得.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知⊙C經過點兩點,且圓心C在直線上.
(1)求⊙C的方程;
(2)若直線與⊙C總有公共點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一動圓與圓外切,與圓內切.
(I)求動圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點,使直線的斜率?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C1與圓C2相交于A、B兩點,
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經過A、B兩點的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標系與參數方程
已知直線的參數方程是,圓C的極坐標方程為
(I)求圓心C的直角坐標;
(Ⅱ)由直線上的點向圓C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知為平面直角坐標系的原點,過點的直線與圓交于,兩點.
(I)若,求直線的方程;
(Ⅱ)若的面積相等,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求經過點,且與圓相切于點的圓的方程,并判斷兩圓是外切還是內切?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為線段CA(不包括端點)上的一個動點,以為圓心,1為半徑作
(1)連結,若,試判斷與直線AB的位置關系,并說明理由;
(2)當線段PC等于多少時,與直線AB相切?
(3)當與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結果,不需要解題過程)

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設雙曲線的一條漸近線與拋物線y=x2+1只有一個公共點,則雙曲線的離心率為(  )

A. B.5 C. D.

查看答案和解析>>

同步練習冊答案