精英家教網(wǎng)如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線x2=4
3
y
的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)若N(
a2+1
2
,0)
為x軸上一點,求證:
AN
NE
分析:(1)易知 b=
3
,c=1,結(jié)合a2=b2+c2可求橢圓的方程
(2)要證當m變化時,直線AE、BD相交于一定點.先找m去特殊值(m=0)時AE與BD相交FK中點 N(
1+a2
2
,0)
故猜想:當m變化時,AE與BD相交于定點 N(
1+a2
2
,0)
然后只要證明AN,EN 的斜率相等,從而可得A、N、E三點共線同理可得B、N、D三點共線即可
解答:解:由題意,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,故有c=1
(1)拋物線x2=4
3
y
的焦點為(0,
3
)故橢圓C的上頂點的坐標為(0,
3
),可得b=
3
,由橢圓的性質(zhì)得a=2
故橢圓C的方程為
x2
4
+
y2
3
=1

(2)設A(x1,y1)B(x2,y2)E(a2,y2)D(a2,y1
當m變化時首先AE過定點N
x=my+1
b2x2+a2y2-a2b2=0
即(a2+b2m2)y2+2mb2y+b2(1-a2)=0
△=4a2b2(a2+m2b2-1)>0(a>1)
KAN=
-y1
a2-1
2
-my1
      KEN=
-y2
1-a2
2

KAN-KEN=
a2-1
2
(y1+y2)-my1y2
1-a2
2
(
a2-1
2
-my1)

a2-1
2
(y1+y2)-my1y2=
a2-1
2
(-
2mb2
a2+m2b2
)
-m
b2(1-a2)
a2+m2b2
=
(a2-1)(mb2-mb2)
a2+m2b2
=0

∴kAN=KEN
∴A、N、E三點共線
∴故存在實數(shù)λ使得
AN
NE
點評:本題主要考查了圓錐曲線的性質(zhì)的綜合應用,而定義的靈活應用是解決本題的關鍵直線與曲線的相交的一般思路是聯(lián)立方程組,通過方程的根與系數(shù)的關系進行求解,本題符號運算,較繁,變形時要嚴謹.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1
的右焦點F,拋物線:x2=4
3
y
的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;
(Ⅲ)連接AE、BD,試證明當m變化時,直線AE與BD相交于定點N(
5
2
,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l:x=my+4(m∈R)與x軸交于點P,交拋物線y2=2ax(a>0)于A,B兩點,坐標原點O是PQ的中點,記直線AQ,BQ的斜率分別為k1,k2
(Ⅰ)若P為拋物線的焦點,求a的值,并確定拋物線的準線與以AB為直徑的圓的位置關系.
(Ⅱ)試證明:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,且交橢圓C于A,B兩點,點A,F(xiàn),B在直線G:x=a2上的射影依次為點D,K,E.
(1)若拋物線x2=4
3
y的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)連接AE,BD,證明:當m變化時,直線AE、BD相交于一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•樂山二模)如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,且交橢圓C于A、B兩點,點A、F、B在直線G;x=a2上的射影依次為點D、K、E,若拋物線x2=4
3
y的焦點為橢圓C的頂點.
(1)求橢圓C的方程;
(2)若直線L交y軸于點M,
MA
1
AF
,
MB
2
BF
,當M變化時,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線x2=4
3
y
的焦點為橢圓C 的上頂點,求橢圓C的方程;(2)(理科生做)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;
否則說明理由.
(文科生做)若N(
a2+1
2
,0)
為x軸上一點,求證:
AN
NE

查看答案和解析>>

同步練習冊答案