已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線(xiàn)y=x+b是拋物線(xiàn)C2:y2=4x的一條切線(xiàn).
(Ⅰ)求橢圓C1的方程.
(Ⅱ)過(guò)點(diǎn)S(0,-
1
3
)
的動(dòng)直線(xiàn)l交橢圓C1于A、B兩點(diǎn),試問(wèn):在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn)T?若存在求出T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(I)由
y=x+b
y2=4x
得x2+(2b-4)x+b2=0
直線(xiàn)y=x+b是拋物線(xiàn)C2:y2=4x的一條切線(xiàn).
所以△=0⇒b=1e=
c
a
=
2
2
⇒a=
2

所以橢圓C1
x2
2
+y2=1
(5分)
(Ⅱ)當(dāng)直線(xiàn)l與x軸平行時(shí),以AB為直徑的圓方程為x2+(y+
1
3
)2=(
4
3
)2

當(dāng)直線(xiàn)l與y軸重合時(shí),以AB為直徑的圓方程為x2+y2=1
所以?xún)蓤A的切點(diǎn)為點(diǎn)(0,1)(8分)
所求的點(diǎn)T為點(diǎn)(0,1),證明如下.
當(dāng)直線(xiàn)l與x軸垂直時(shí),以AB為直徑的圓過(guò)點(diǎn)(0,1)
當(dāng)直線(xiàn)l與x軸不垂直時(shí),可設(shè)直線(xiàn)l為:y=kx-
1
3

y=kx-
1
3
x2
2
+y2=1
得(18k2+9)x2-12kx-16=0
設(shè)A(x1,y1),B(x2,y2)則
x1+x2=
12k
18k2+9
x1x2=
-16
18k2+9
TA
TB
=x1x2-
4
3
(x1+x2)+
16
9
=(1+k2)
-16
18k2+9
-
4
3
×
12k
18k2+9
+
16
9
=0

所以
TA
TB
,即以AB為直徑的圓過(guò)點(diǎn)(0,1)
所以存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn)T(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知的三邊長(zhǎng)成等差數(shù)列,若點(diǎn)的坐標(biāo)分別為.(1)求頂點(diǎn)的軌跡的方程;(2)若線(xiàn)段的延長(zhǎng)線(xiàn)交軌跡于點(diǎn),當(dāng)時(shí)求線(xiàn)段的垂直平分線(xiàn)軸交點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,有一正方形鋼板ABCD缺損一角(圖中的陰影部分),邊緣線(xiàn)OC是以直線(xiàn)AD為對(duì)稱(chēng)軸,以線(xiàn)段AD的中點(diǎn)O為頂點(diǎn)的拋物線(xiàn)的一部分.工人師傅要將缺損一角切割下來(lái),使剩余的部分成為一個(gè)直角梯形.若正方形的邊長(zhǎng)為2米,問(wèn)如何畫(huà)切割線(xiàn)EF,可使剩余的直角梯形的面積最大?并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的左、右焦點(diǎn)分別是F1、F2,離心率為
3
2
,過(guò)F1且垂直于x軸的直線(xiàn)被橢圓C截得的線(xiàn)段長(zhǎng)為1;
(Ⅰ)求橢圓C的方程.
(Ⅱ)若A,B,C是橢圓上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn),當(dāng)點(diǎn)B是橢圓C的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.
(Ⅲ)設(shè)點(diǎn)p是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接PF1、PF2,設(shè)∠F1PF2的角平分線(xiàn)PM交橢圓C的長(zhǎng)軸于點(diǎn)M(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,且過(guò)點(diǎn)A(2,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)l:x-1-y=0與橢圓C交于不同的兩點(diǎn)M,N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),且點(diǎn)B到橢圓的兩個(gè)焦點(diǎn)距離之和為4;
(1)求橢圓方程;
(2)設(shè)A為橢圓的左頂點(diǎn),直線(xiàn)AB交y軸于點(diǎn)C,過(guò)C作斜率為k的直線(xiàn)l交橢圓于D,E兩點(diǎn),若
S△CBD
S△CAE
=
1
6
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)橢圓左焦點(diǎn)F,傾斜角為
π
3
的直線(xiàn)交橢圓于A,B兩點(diǎn),若|FA|=2|FB|,則橢圓的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的曲線(xiàn)C是由部分拋物線(xiàn)C1:y=x2-1(|x|≥1)和曲線(xiàn)C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直線(xiàn)l與曲線(xiàn)C1相切于點(diǎn)M,與曲線(xiàn)C2相切于點(diǎn)N,記點(diǎn)M的橫坐標(biāo)為t(t>1),其中A(-1,0),B(1,0).
(1)當(dāng)t=
2
時(shí),求m的值和點(diǎn)N的坐標(biāo);
(2)當(dāng)實(shí)數(shù)m取何值時(shí),∠MAB=∠NAB?并求出此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的左、右焦點(diǎn)坐標(biāo)分別是(-
2
,0)
,(
2
,0)
,離心率是
6
3
,直線(xiàn)y=t橢圓C交與不同的兩點(diǎn)M,N,以線(xiàn)段為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標(biāo);
(Ⅲ)設(shè)Q(x,y)是圓P上的動(dòng)點(diǎn),當(dāng)T變化時(shí),求y的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案