【題目】選修4—5: 不等式選講

已知函數(shù)f(x) 的定義域?yàn)?/span>R.

()求實(shí)數(shù)m的取值范圍;

()m的最大值為n,當(dāng)正數(shù)a,b滿足 n時(shí),求7a4b的最小值.

【答案】() m≤4()

【解析】試題分析:(1)由函數(shù)定義域?yàn)镽,可得|x+1|+|x﹣3|﹣m≥0恒成立,設(shè)函數(shù)g(x)=|x+1|+|x﹣3|,利用絕對(duì)值不等式的性質(zhì)求出其最小值即可;

(2)由(1)知n=4,變形7a+4b=,利用基本不等式的性質(zhì)即可得出.

試題解析:

(Ⅰ)由題意可知:m≥0對(duì)任意實(shí)數(shù)恒成立.

設(shè)函數(shù)g(x)=,則m不大于函數(shù)g(x)的最小值.

=4.g(x)的最小值為4,所以m≤4

(Ⅱ)(Ⅰ)n=4,

∴7a+4b

.

當(dāng)且僅當(dāng)a+2b=3ab,即b=2a時(shí),等號(hào)成立.所以7a+4b的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中, ,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為

1)若,且,求;

2)是否存在實(shí)數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由;

3)若,求.(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓?jiān)┊?dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購(gòu)者一次性購(gòu)物情況,某統(tǒng)計(jì)部門(mén)隨機(jī)抽查了1月1日100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對(duì)這100名網(wǎng)購(gòu)者進(jìn)一步調(diào)查顯示:購(gòu)物金額在2000元以上的購(gòu)物者中網(wǎng)齡3年以上的有35人,

購(gòu)物金額在2000元以下(含2000元)的購(gòu)物者中網(wǎng)齡不足3年的有20人,請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并據(jù)

此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在3年以上有關(guān)?

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), 為曲線在點(diǎn)處的切線.

)求的方程.

)當(dāng)時(shí),證明:除切點(diǎn)之外,曲線在直線的下方.

)設(shè), ,且滿足,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列五個(gè)命題:

(1)函數(shù)內(nèi)單調(diào)遞增。

(2)函數(shù)的最小正周期為2

(3)函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱。

(4)函數(shù)的圖像關(guān)于直線成軸對(duì)稱。

(5)把函數(shù) 的圖象向右平移得到函數(shù)的圖象。

其中真命題的序號(hào)是________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.

I)若花店一天購(gòu)進(jìn)枝玫瑰花,寫(xiě)出當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.

II)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量

頻數(shù)

天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

i)若花店一天購(gòu)進(jìn)枝玫瑰花, 表示當(dāng)天的利潤(rùn)(單位:元),求的分布列,數(shù)學(xué)期望.

ii)若花店計(jì)劃一天購(gòu)進(jìn)枝或枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)枝還是枝?只寫(xiě)結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上且過(guò)點(diǎn),離心率是.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線過(guò)點(diǎn)且與橢圓交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽率,得到如下表格:

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25” 的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得到的線性回歸方程是否可靠?

參考公式: , .

查看答案和解析>>

同步練習(xí)冊(cè)答案