如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中點.
(Ⅰ)證明:C1D⊥平面BDC;
(Ⅱ)設(shè)AA1=2,求幾何體C-BC1D的體積.
考點:直線與平面垂直的判定,棱柱、棱錐、棱臺的體積
專題:綜合題,空間位置關(guān)系與距離
分析:(Ⅰ)證明DC1⊥BC,DC1⊥DC,利用線面垂直的判定定理,即可證明C1D⊥平面BDC;
(Ⅱ)利用VC-BC1D=VB-CC1D,求幾何體C-BC1D的體積.
解答: (Ⅰ)證明:由題設(shè)知BC⊥CC1,BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1,又DC1?平面ACC1A1,
∴DC1⊥BC.
由題設(shè)知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,
又DC∩BC=C,
∴C1D⊥平面BDC;(6分)
(2)解:∵ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中點,AA1=2,
∴VC-BC1D=VB-CC1D=
1
3
1
2
•2•1•1=
1
3
.(12分)
點評:本題考查直線與平面垂直的判定,三棱錐體積的計算,著重考查線面垂直的判定定理的應(yīng)用與棱柱、棱錐的體積,考查分析表達與運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.以下說法正確的是( 。
A、f(x)=1(x∈R)不是“保三角形函數(shù)”
B、若定義在R上的函數(shù)f(x)的值域是[
e
,e](e為自然對數(shù)的底數(shù)),則f(x)一定是“保三角形函數(shù)”
C、f(x)=
1
x2+1
(x∈R)是“保三角形函數(shù)”
D、“保三角形函數(shù)”一定是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x2+x-1>0},B={x|(x-m)[x-(m+1)]<0}.
(1)當m=0時,求A∩B;
(4)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x,g(x)=-6x(a∈R).
(1)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最小值和最大值;
(2)若h(x)=f(x)-g(x)在x∈(0,+∞)時是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點O,焦點在x軸上,離心率為
1
2
,右焦點到右頂點的距離為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:mx+y+1=0與橢圓C交于A,B兩點,是否存在實數(shù)m,使|
OA
+
OB
|=|
OA
-
OB
||成立?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex+2ax-1,且f′(ln2)=2ln2
(1)求a的值;
(2)證明:當x>0時f(x)>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

規(guī)定C
 
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且C
 
0
x
=1這是組合數(shù)C
 
m
n
(n,m是正整數(shù),且m≤n)的一種推廣.
(1)C
 
5
-15
的值;
(2)組合數(shù)的兩個性質(zhì):C
 
m
n
=C
 
n-m
n
;C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
是否都能推廣到C
 
m
x
(x∈R,m∈N*)的情形?若能推廣,則寫出推廣的形式并給予證明,或不能則說明理由;
(3)已知組合數(shù)C
 
m
n
是正整數(shù),證明:當x∈Z,m是正整數(shù)時,C
 
m
x
∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比不為1的等比數(shù)列{an}的首項a1=
1
2
,前n項和為Sn,且a3+S5,a4+S4,a5+S3成等差數(shù)列.
(1)求等比數(shù)列{an}的通項公式;
(2)對n∈N+,在an與an+1之間插入3n個數(shù),使這個3n+2個數(shù)成等差數(shù)列,記插入的這個3n個數(shù)的和為bn,且cn=
3n
4bn
.求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4個男同學(xué)和3個女同學(xué)站成一排
(1)甲乙兩同學(xué)之間必須恰有3人,有多少種不同的排法?
(2)甲乙兩人相鄰,但都不與丙相鄰,有多少種不同的排法?
(3)女同學(xué)從左到右按高矮順序排,有多少種不同的排法?(3個女生身高互不相等)

查看答案和解析>>

同步練習(xí)冊答案