設(shè)數(shù)列是公差為的等差數(shù)列,其前項(xiàng)和為,已知,。
(1)求數(shù)列的通項(xiàng)及前項(xiàng)和為;   
(2)求證:。

(1)(2)對于證明不等式的成立,關(guān)鍵是對于左邊和式的求解,然后借助于函數(shù)的思想來證明。

解析試題分析:解:(1)     2分
所以                                                 2分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/b/envdv.png" style="vertical-align:middle;" />                            3分
所以
           3分
考點(diǎn):等差數(shù)列,裂項(xiàng)求和
點(diǎn)評:主要是考查了數(shù)列的通項(xiàng)公式和數(shù)列求和的綜合運(yùn)用,屬于常規(guī)題,計(jì)算要細(xì)心。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,a2+a7=-23,a3+a8=-29.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為c的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是函數(shù)的圖像上一點(diǎn),等比數(shù)列的前項(xiàng)的和為;數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足.
求數(shù)列的通項(xiàng)公式;
若數(shù)列的前項(xiàng)和為,問的最小正整數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足
(1)設(shè),當(dāng)時(shí),求數(shù)列的通項(xiàng)公式.
(2)設(shè)求正整數(shù)使得一切均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

觀察下列三角形數(shù)表:
第一行                 
第二行                
第三行                
第四行                
第五行               
………………………………………….
假設(shè)第行的第二個(gè)數(shù)為.
(1)依次寫出第八行的所有8個(gè)數(shù)字;
(2)歸納出的關(guān)系式,并求出的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a3=10,a3a5=40. 數(shù)列{bn}中,前n項(xiàng)和
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若c1=1,cn+1cn,求數(shù)列的通項(xiàng)公式
(3)是否存在正整數(shù)k,使得+…+對任意正整數(shù)n均成立?若存在,求出k的最大值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和,且Sn的最大值為8.
(1)確定常數(shù)k,求an
(2)求數(shù)列的前n項(xiàng)和Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,,……,,……
(1)計(jì)算,
(2)根據(jù)(1)中的計(jì)算結(jié)果,猜想的表達(dá)式并用數(shù)學(xué)歸納法證明你的猜想。

查看答案和解析>>

同步練習(xí)冊答案