【題目】設是一些互不相同的四元數(shù)組的集合,其中,或.已知的元素個數(shù)不超過15,且滿足:若、,則、,其中,,.求集合元素個數(shù)的最大值.
【答案】見解析
【解析】
顯然,所有可能的四元數(shù)組有16種.因至少有一個四元數(shù)組不在中,
所以,、、、中至少有一個不在中.
若不然,由題設條件可推出所有四元數(shù)組都在中.
不妨設.
此時,由題設條件知、、中至少有兩個不能在中(設為和.則和不能同時在中(設不在中),
于是,的元素個數(shù)不超過個.
設是所有可能的16個四元數(shù)組中去掉上述4個四元數(shù)組后所成的集合.
接下來用反證法證明滿足題目條件.
任取、.
(1)若,則,.故,.
不妨設,則在上述被去掉的4個四元數(shù)組中,矛盾.
(2)若,則,.故,.
不妨設,則在上述被去掉的4個四元數(shù)組中,矛盾
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的極坐標方程與曲線的直角坐標方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】方程為的曲線,給出下列四個結論:
① 關于軸對稱;
② 關于坐標原點對稱;
③ 關于軸對稱;
④ ,;
以上結論正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們知道:用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在實常數(shù)和,使得函數(shù)和對其公共定義域上的任意實數(shù)都滿足:和恒成立,則稱此直線為和的“隔離直線”,已知函數(shù),,,下列命題為真命題的是( )
A.在內(nèi)單調(diào)遞減
B.和之間存在“隔離直線”,且的最小值為
C.和之間存在“隔離直線”,且的取值范圍是
D.和之間存在唯一的“隔離直線”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知偶函數(shù)滿足且,當時,,關于的不等式在上有且只有200個整數(shù)解,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com