魔術(shù)大師把一塊長和寬都是13dm的地毯按圖(1)裁好,再按圖(2)拼成矩形.計算兩個圖形的面積,分別得到169dm2與168dm2.魔術(shù)師得意洋洋的說,他證明了169=168.你能揭穿魔術(shù)師的奧秘嗎?
考點:直線的斜率
專題:直線與圓
分析:建坐標(biāo)系可得kAC=
8
3
,kEC=
13
5
,kAC≠kEC,可判A、C、D、E四點不可能在同一條直線上
解答: 解:以B為坐標(biāo)原點建立直角坐標(biāo)系,使得BE在y軸正半軸上,AB在x軸負(fù)半軸上.
可得邊AC所在直線的斜率為kAC=
8
8-5
=
8
3
,
邊EC所在直線的斜率為kEC=
13
5
,即 kAC≠kEC,
∴A、C、D、E四點不可能在同一條直線上.
即圖2不是矩形,魔術(shù)師的計算有誤.
點評:本題考查直線的斜率,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
1
6
B、
1
12
C、
2
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的函數(shù),f(xy)=f(x)+f(y),求證:f(x)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊落在直線y=
1
2
x上,求sinα+2cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C的對邊分別是a,b,c,已知a=1,平面向量
m
=(sin(π-C),cosC),
n
=(sin(B+
π
2
),sinB),且
m
n
=sin2A.
(Ⅰ)求△ABC外接圓的面積;
(Ⅱ)已知O為△ABC的外心,由O向邊BC、CA、AB引垂線,垂足分別為D、E、F,求
|
OD
|
cosA
+
|
OE
|
cosB
+
|
OF
|
cosC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),z-i和
z
1+i
均為實數(shù).
(I)求復(fù)數(shù)z;
(Ⅱ)若復(fù)數(shù)(z-ti)2在復(fù)平面內(nèi)對應(yīng)點在第一象限,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,2cosA-cos2A=
3
2

(1)求角A的度數(shù);
(2)若a=
3
,b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三條邊分別為a,b,c求證:
a+b
1+a+b
c
1+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的n值為
 

查看答案和解析>>

同步練習(xí)冊答案