(1)求證:a logaN=N(a>0,且a≠1)
(2)用(1)的結(jié)論求下列式子的值.(其中③需詳細(xì)寫出解答過程)
①2 log264②3 2log39③2 log4(2-
3
)2
+3 log9(2+
3
)2
考點:對數(shù)的運算性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由對數(shù)的定義,可知,ab=N?logaN=b,運用代入法,即可得證;
(2)運用(1)的結(jié)論,以及對數(shù)的運算法則,即可求得.
解答: (1)證明:由對數(shù)的定義,可知,ab=N?logaN=b,
將b=logaN,代入ab=N,即得alogaN=N;
(2)解:①2log264=64;
②32log39=3log381=81;
③2 log4(2-
3
)2
+3 log9(2+
3
)2
=22log4(2-
3
)
+32log9(2+
3
)

=4log4(2-
3
)
+9log9(2+
3
)
=2-
3
+2+
3
=4.
點評:本題考查對數(shù)的定義和對數(shù)恒等式的運用,考查對數(shù)的運算法則,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcos(φ-x)-
1
2
(0<φ<
π
2
)的圖象過點(
π
3
,1).
(Ⅰ)求φ的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面ABCD⊥平面ABE,四邊形ABCD是矩形,AD=AE=BE=2,M、H分別是DE、AB的中點,主(正)視圖方向垂直平面ABCD時,左(側(cè))視圖的面積為
2

(1)求證:MH∥平面BCE;
(2)求證:平面ADE⊥平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知sin2x+cos2x=1,函數(shù)f(x)=-
1
2
-
a
4
+acosx+sin2x(0≤x≤
π
2
)的最大值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-4的零點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)滿足f(0)=1,且在x=2處取得最小值-3.
(1)求f(x)的解析式;
(2)若y=f(x)+2ax在[-1,1]上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=(
1
4
x+(
1
2
x+1的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對于任意的x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時,f(x)<0,f(-1)=2
(1)求f(0)的值并判斷函數(shù)單調(diào)性
(2)求函數(shù)f(x)在[-3,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn(n∈N*).
(1)求數(shù)列{an}的通項公式.
(2)設(shè)bn=(2n-1)•an(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案