【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于、兩點,求的值,并求定點,兩點的距離之積.

【答案】(Ⅰ)直線的普通方程,曲線的直角坐標(biāo)方程為;(Ⅱ).

【解析】

(Ⅰ)由可得曲線的直角坐標(biāo)方程為;用消參法消去參數(shù),得直線的普通方程.

(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,由直線的參數(shù)方程中的參數(shù)幾何意義求解.

(Ⅰ)由為參數(shù)),消去參數(shù),得直線的普通方程.

,得曲線的直角坐標(biāo)方程為.

(Ⅱ)將直線的參數(shù)方程為為參數(shù)),

代入,得.

,.

.

所以,的值為,定點,兩點的距離之積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)濟(jì)訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進(jìn)貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲費,為每次訂貨費. 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費為120元/年,每次訂貨費為2500元.

(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費;

(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費最少?最少費用為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, 分別為的中點.

(1)證明: 平面;

(2)證明:平面平面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】90后”指1990年及以后出生,“80后”指1980-1989年之間出生,“80前”指1979年及以前出生.某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是(

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若在區(qū)間內(nèi)單調(diào)遞增,求的取值范圍;

2)若在區(qū)間內(nèi)存在極大值,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù),函數(shù).

1)當(dāng)時,求函數(shù)的值域;

2)當(dāng)時,判斷函數(shù)的單調(diào)性,并證明;

3)求實教的范圍,使得對于區(qū)間上的任意三個實數(shù),都存在以為邊長的三角形.

查看答案和解析>>

同步練習(xí)冊答案