【題目】定義滿足不等式|x﹣A|<B(A∈R,B>0)的實(shí)數(shù)x的集合叫做A的B 鄰域.若a+b﹣t(t為正常數(shù))的a+b鄰域是一個(gè)關(guān)于原點(diǎn)對稱的區(qū)間,則a2+b2的最小值為 .
【答案】
【解析】解:因?yàn)椋篈的B鄰域在數(shù)軸上表示以A為中心,B為半徑的區(qū)域,
∴|x﹣(a+b﹣t)|<a+b﹣t<x<2(a+b)﹣t,
而鄰域是一個(gè)關(guān)于原點(diǎn)對稱的區(qū)間,所以可得a+b﹣t=0a+b=t.
又因?yàn)椋篴2+b2≥2ab2(a2+b2)≥a2+2ab+b2=(a+b)2=t2 .
所以:a2+b2≥ .
故答案為: .
先根據(jù)條件求出﹣t<x<2(a+b)﹣t;再結(jié)合鄰域是一個(gè)關(guān)于原點(diǎn)對稱的區(qū)間得到a+b=t,最后結(jié)合基本不等式即可求出a2+b2的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=asin(2x+ )+b
(1)若a>0,求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時(shí),f(x)的值域?yàn)閇1,3],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,圓: .直線與拋物線交于點(diǎn)、兩點(diǎn),與圓切于點(diǎn).
(1)當(dāng)切點(diǎn)的坐標(biāo)為時(shí),求直線及圓的方程;
(2)當(dāng)時(shí),證明: 是定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一、高二、高三人數(shù)分別是400人、350人、350人.為調(diào)査該校學(xué)習(xí)情況,采用分層抽樣的方法從中抽取一個(gè)容量為的樣本.已知從高一的同學(xué)中抽取的同學(xué)有8人
(1)求樣本容量的值和高二抽取的同學(xué)的人數(shù)
(2)若從高二抽取的同學(xué)中選出2人參加某活動(dòng),已知高二被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市上年度電價(jià)為0.80元/千瓦時(shí),年用電量為a千瓦時(shí).本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)~0.75元/千瓦時(shí)之間,而居民用戶期望電價(jià)為0.40元/千瓦時(shí)(該市電力成本價(jià)為0.30元/千瓦時(shí))經(jīng)測算,下調(diào)電價(jià)后,該城市新增用電量與實(shí)際電價(jià)和用戶期望電價(jià)之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r(jià)最低為多少時(shí),可保證電力部門的收益比上年度至少增加20%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對2014年中國好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下:
觀眾年齡 | 支持A | 支持B | 支持C |
20歲以下 | 200 | 400 | 800 |
20歲以上(含20歲) | 100 | 100 | 400 |
(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取6人作為一個(gè)總體,從這6人中任意選取2人,求恰有1人在20歲以下的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.
某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.給定函數(shù) ,請你根據(jù)上面探究結(jié)果,計(jì)算
= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com