用數(shù)學歸納法證明不等式(1+2+3+…+n)(1+
1
2
+
1
3
+…+
1
n
)≥n2+n-1成立,初始值n0至少應取( 。
A、1B、2C、3D、4
考點:數(shù)學歸納法
專題:證明題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:將n代入計算,即可得出結(jié)論.
解答: 解:n=1時,左邊=1,右邊=1;n=2時,左邊=
9
2
,右邊=5,
n=3時,左邊=11,右邊=11;n=4時,左邊=
125
6
,右邊=19,
∴初始值n0至少應取3.
故選:C.
點評:本題主要考查數(shù)學歸納法,起始值的驗證,求解的關(guān)鍵是發(fā)現(xiàn)左邊的規(guī)律,從而解決問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別是BC,A1B1的中點,則異面直線AD1與EF所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三點P(1,1),A(2,-4),B(x,-14)共線,則( 。
A、x=-1B、x=3
C、x=4D、x=51

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位有若干部門,現(xiàn)召開一個70人的座談會,決定用分層抽樣的方法從各部門選取代表,其中一個部門20人中被抽取4人,則這個單位應有( 。
A、200人B、250人
C、300人D、350人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知l是直線,α、β是兩個不同平面,下列命題中的真命題是(  )
A、若l∥α,l∥β,則α∥β
B、若α⊥β,l∥α,則l⊥β
C、若l⊥α,l∥β,則α⊥β
D、若l∥α,α∥β,則l∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定數(shù)列,1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…則這個數(shù)列的通項公式是( 。
A、an=2n2+3n-1
B、an=n2+5n-5
C、an=2n3-3n2+3n-1
D、an=2n3-n2+n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方形ABCD的邊長為3,點E在邊AB上,點F在邊BC上,AE=BF=1,動點P從點E出發(fā)沿直線向F運動,每當碰到正方形的邊時反彈,反彈時反射角等于入射角.當點P第一次碰到點E時,P與正方形的邊碰撞的次數(shù)為( 。
A、8B、6C、4D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明:“若a,b,c都是正數(shù),則三個數(shù)a+
1
b
,b+
1
c
,c+
1
a
中至少有一個不小于2”時,“假設”應為( 。
A、假設a+
1
b
,b+
1
c
,c+
1
a
至少有一個大于2
B、假設a+
1
b
,b+
1
c
,c+
1
a
都不大于2
C、假設a+
1
b
,b+
1
c
,c+
1
a
至多有兩個不小于2
D、假設a+
1
b
,b+
1
c
,c+
1
a
都小于2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=(a2-7a+6)+(a2-5a-6)i(a∈R),試求滿足下列條件時實數(shù)a的取值集合.
(1)復數(shù)z為純虛數(shù);
(2)復數(shù)z在復平面內(nèi)的對應點在第四象限.

查看答案和解析>>

同步練習冊答案