已知函數(shù)f(x)=
x+1
x
,證明函數(shù)f(x)在(-∞,0)上是減函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先化簡(jiǎn)函數(shù)f(x),再用定義證明f(x)在(-∞,0)上是減函數(shù)即可.
解答: 解:∵函數(shù)f(x)=
x+1
x
=1+
1
x
,
現(xiàn)證明函數(shù)f(x)在(-∞,0)上是減函數(shù);
任取x1、x2∈(-∞,0),且x1<x2,
則f(x1)-f(x2)=(1+
1
x1
)-(1+
1
x2

=
x2-x1
x1x2

∵x1x2>0,x2-x1>0,
∴f(x1)-f(x2)>0,
∴f(x1)>f(x2),
∴f(x)在(-∞,0)上是減函數(shù).
點(diǎn)評(píng):本題考查了用單調(diào)性的定義證明函數(shù)的單調(diào)性問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx,x∈[
π
6
,
3
],則y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(0<φ<π),y=f(x)圖象的一條對(duì)稱(chēng)軸是直線(xiàn)x=
π
8

(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線(xiàn)C1
x=3+cosθ
y=4+sinθ
(θ為參數(shù))和曲線(xiàn)C2:ρ=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿(mǎn)足(1-3i)z=10i,則z等于(  )
A、-1-3iB、3-i
C、1+3iD、-3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式正確的是( 。
A、0•
a
=
0
B、0•
a
=0
C、0•a=
0
D、
0
•a=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖(單位:cm)如圖所示,其中俯視圖中的曲線(xiàn)是四分之一的圓弧,則該幾何體的體積等于
 
cm3,表面積等于
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x+sinx的值域?yàn)?div id="ihbzryd" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
ax
(4-
a
2
)x+2
(x>1)
(x≤1)
是R上的單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案