如圖:四邊形是一個(gè)長(zhǎng)方形臺(tái)球桌面,有白、黑兩球分別位于兩點(diǎn)的位置上.試問(wèn),怎樣撞擊白球,才能使白球先碰撞臺(tái)邊,再碰撞,經(jīng)兩次反彈后再擊中黑球?
(將白球移動(dòng)路線畫在圖上,不能說(shuō)明問(wèn)題的不予計(jì)分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根

(1)證明四點(diǎn)共圓
(2)若四點(diǎn)所在圓的半徑

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知圓C滿足(1)截y軸所得弦MN長(zhǎng)為4;(2)被x軸分成兩段圓弧,其弧 長(zhǎng)之比為3:1,且圓心在直線y=x上,求圓C的方程。
(為方便學(xué)生解答,做了一種情形的輔助圖形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知A、B、C、D為圓O上的四點(diǎn),直線DE為圓O的切線,AC∥DE,AC與BD相交于H點(diǎn)
(Ⅰ)求證:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點(diǎn),EF交BD于G,交AC于H. 若AD=5,BC=7,則GH=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(請(qǐng)考生在第22、23兩題中任選一題作答,如果多做。則按所做的第一題記分.
(本小題滿分10分)選修4-1:幾何證明選講
如圖:AB是⊙O的直徑,G是AB延長(zhǎng)線上的一點(diǎn),GCD是⊙O的割線,過(guò)點(diǎn)G作AG的垂線,交直線AC于點(diǎn)E,交直線AD于點(diǎn)F,過(guò)點(diǎn)G作⊙O的切線,切點(diǎn)為H.求證:

(Ⅰ)C、D、F、E四點(diǎn)共圓;
(Ⅱ)GH2=GE·GF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為
ρcosθ2ρsinθ+7=0,則圓心到直線的距離為_(kāi)_

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿分10分)選修4-1:幾何證明選講
如圖,在△ABC中,∠ABC=90°,以BC為直徑的圓O交 
 
AC于點(diǎn)D,設(shè)E為AB的中點(diǎn).
(1)求證:直線DE為圓O的切線;
(2)設(shè)CE交圓O于點(diǎn)F,求證:CD·CA=CF·CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(幾何證明選講選做題)如圖,⊙O的直徑=6cm,延長(zhǎng)線上的一點(diǎn),過(guò)點(diǎn)作⊙O的切線,切點(diǎn)為,連接,若30°,PC =           cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案