【題目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1 , A2 , A3 , …,An為集合A的一種拆分,所有拆分的個(gè)數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達(dá)式.
【答案】
(1)解:設(shè)A1∪A2={a1},共有3種,即f(2,1)=3;
設(shè)A1∪A2={a1,a2},若A1=,則有1種;若A1={a1},則有2種;
若A1={a2},則有2種;若A1={a1,a2},則有4種;即f(2,2)=9;
設(shè)A1∪A2∪A3={a1,a2},若A1=,則A2∪A3={a1,a2},所以有f(2,2)=9種;
若A1={a1},則A2∪A3={a1,a2}或A2∪A3={a2},
所以有f(2,2)+f(2,1)=12;若A1={a2},則有12種;
若A1={a1,a2},則A2∪A3={a1,a2}或A2∪A3={a1}或A2∪A3={a2}或A2∪A3=,
所以有1+3+3+9=16種;即f(3,2)=49
(2)解:猜想f(n,2)=(2n﹣1)2,n≥2,n∈N*,用數(shù)學(xué)歸納法證明.
當(dāng)n=2時(shí),f(2,2)=9,結(jié)論成立.
假設(shè)n=k時(shí),結(jié)論成立,即f(k,2)=(2k﹣1)2,
當(dāng)n=k+1時(shí),A1∪A2∪…∪Ak+1={a1,a2}
當(dāng)Ak+1=時(shí),A1∪A2∪A3∪…∪Ak={a1,a2},所以有f(k,2)=(2k﹣1)2種;
當(dāng)Ak+1={a1}時(shí),A1∪A2∪…∪Ak={a1,a2},所以有f(k,2)=(2k﹣1)2種,
或A1∪A2∪A3∪…∪Ak={a2},所以有2k﹣1種,共有2k(2k﹣1)種;
同理當(dāng)Ak+1={a2}時(shí),共有2k(2k﹣1)種;
當(dāng)Ak+1={a1,a2}時(shí),A1∪A2∪A3∪…∪Ak={a1,a2},所以有f(k,2)=(2k﹣1)2種,
或A1∪A2∪A3∪…∪Ak={a1},所以有2k﹣1種,或A1∪A2∪…∪Ak={a2},
所以有2k﹣1種,或A1∪A2∪A3∪…∪Ak=,所以有1種,共有22k種;
則f(k+1,2)=4(2k﹣1)2+4(2k﹣1)+1=(2k+1﹣1)2,
所以,當(dāng)n=k+1時(shí),結(jié)論成立.
所以f(n,2)=(2n﹣1)2,n≥2,n∈N*
【解析】(1)設(shè)A1∪A2={a1},得f(2,1)=3; 設(shè)A1∪A2={a1 , a2},得f(2,2)=9;設(shè)A1∪A2∪A3={a1 , a2},由此利用分類討論思想能求出f(3,2).(2)猜想f(n,2)=(2n﹣1)2 , n≥2,n∈N* , 再利用數(shù)學(xué)歸納法進(jìn)行證明.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的并集運(yùn)算的相關(guān)知識(shí),掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)試對(duì)與的關(guān)系進(jìn)行相關(guān)性檢驗(yàn),如與具有線性相關(guān)關(guān)系,求出對(duì)的回歸直線方程;
(Ⅲ)試預(yù)測(cè)加工個(gè)零件需要多少時(shí)間?
參考數(shù)據(jù):,.
附:);, ;
相關(guān)性檢驗(yàn)的臨界值表
n-2 | 小概率 | n-2 | 小概率 | n-2 | 小概率 | |||
0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | |||
1 | 0.997 | 1 | 4 | 0.811 | 0.917 | 7 | 0.666 | 0.798 |
2 | 0.950 | 0.990 | 5 | 0.754 | 0.874 | 8 | 0.632 | 0.765 |
3 | 0.878 | 0.959 | 6 | 0.707 | 0.834 | 9 | 0.602 | 0.735 |
注:表中的n為數(shù)據(jù)的組數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第二屆世界青年奧林匹克運(yùn)動(dòng)會(huì),中國(guó)獲37金,13銀,13銅共63枚獎(jiǎng)牌居獎(jiǎng)牌榜首位,并打破十項(xiàng)青奧會(huì)記錄.由此許多人認(rèn)為中國(guó)進(jìn)入了世界體育強(qiáng)國(guó)之列,也有許多人持反對(duì)意見.有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2 548名男性公民中有1 560名持反對(duì)意見,2 452名女性公民中有1 200人持反對(duì)意見,在運(yùn)用這些數(shù)據(jù)說明中國(guó)的獎(jiǎng)牌數(shù)是否與中國(guó)進(jìn)入體育強(qiáng)國(guó)有無關(guān)系時(shí),用什么方法最有說服力( )
A. 平均數(shù)與方差 B. 回歸直線方程
C. 獨(dú)立性檢驗(yàn) D. 概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:
抽取順序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得=xi=9.97,s==≈0.212,≈18.439,(xi﹣)(i﹣8.5)=﹣2.78,
其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)
過程的進(jìn)行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地
變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(﹣3s,+3s)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天
的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
、?gòu)倪@一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
、谠(﹣3s,+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的
均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=,≈0.09.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品店為了了解氣溫對(duì)銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:
2 | 5 | 8 | 9 | 11 | |
12 | 10 | 8 | 8 | 7 |
(1)求出與的回歸方程;
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請(qǐng)用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額.
附: 回歸方程中, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù),函數(shù).
(1) 若,求的單調(diào)遞減區(qū)間;
(2) 若為奇函數(shù),且關(guān)于的不等式對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍;
(3) 當(dāng)時(shí),若方程有三個(gè)不相等的實(shí)數(shù)根、、,且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
分類 | 積極參加 班級(jí)工作 | 不太主動(dòng)參 加班級(jí)工作 | 總計(jì) |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
總計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時(shí)間在晚上的男嬰為24人,女嬰為8人;出生時(shí)間在白天的男嬰為31人,女嬰為26人.
(1)將2×2列聯(lián)表補(bǔ)充完整.
性別 | 出生時(shí)間 | 總計(jì) | |
晚上 | 白天 | ||
男嬰 | |||
女嬰 | |||
總計(jì) |
(2)能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為嬰兒性別與出生時(shí)間有關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com