已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為數(shù)學(xué)公式,且經(jīng)過(guò)點(diǎn)M數(shù)學(xué)公式
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存過(guò)點(diǎn)P(2,1)的直線(xiàn)l1與橢圓C相交于不同的兩點(diǎn)A,B,滿(mǎn)足數(shù)學(xué)公式?若存在,求出直線(xiàn)l1的方程;若不存在,請(qǐng)說(shuō)明理由.

解:(Ⅰ)設(shè)橢圓C的方程為(a>b>0),
∵e==,且經(jīng)過(guò)點(diǎn)M
,
解得c2=1,a2=4,b2=3,
故橢圓C的方程為.…(4分)
(Ⅱ)若存在直線(xiàn)l滿(mǎn)足條件,由題意可設(shè)直線(xiàn)l的方程為y=k1(x-2)+1,件,
由題意可設(shè)直線(xiàn)l的方程為y=k1(x-2)+1,

得(3+4k12)x2-8k1(2k1-1)x+16k12-16k1-8=0.
因?yàn)橹本(xiàn)l與橢圓C相交于不同的兩點(diǎn)A,B,
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),
所以△=[-8k1(2k1-1)]2-4•(3+4k12)•(16k12-16k1-8)>0.
整理得32(6k1+3)>0.
解得k1>-,

因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/197439.png' />,即,
所以=

所以,解得
因?yàn)锳,B為不同的兩點(diǎn),所以
于是存在直線(xiàn)l1滿(mǎn)足條件,其方程為.…(12分)
分析:(1)先設(shè)橢圓的標(biāo)準(zhǔn)方程,將點(diǎn)M代入得到一個(gè)方程,根據(jù)離心率得到一個(gè)關(guān)系式,再由a2=b2+c2可得到a,b,c的值,進(jìn)而得到橢圓的方程.
(2)假設(shè)存在直線(xiàn)滿(mǎn)足條件,設(shè)直線(xiàn)方程為y=k1(x-2)+1,然后與橢圓方程聯(lián)立消去y得到一元二次方程,且方程一定有兩根,故應(yīng)△大于0得到k的范圍,進(jìn)而可得到兩根之和、兩根之積的表達(dá)式,再由,可確定k1的值,從而得解.
點(diǎn)評(píng):本題主要考查橢圓的基本性質(zhì)和直線(xiàn)與橢圓的綜合題.直線(xiàn)與圓錐曲線(xiàn)的綜合題是高考的重點(diǎn)題型,要著重復(fù)習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線(xiàn)的一條漸近線(xiàn)為mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任意取一個(gè)值,使得雙曲線(xiàn)的離心率大于3的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線(xiàn)的離心率為
3
2
,實(shí)軸長(zhǎng)為4,則雙曲線(xiàn)的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線(xiàn)C,過(guò)點(diǎn)P(2,
3
)且離心率為2,則雙曲線(xiàn)C的標(biāo)準(zhǔn)方程為
x2
3
-
y2
9
=1
x2
3
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•合肥模擬)已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線(xiàn)的一條漸近線(xiàn)的方程為y=
1
2
x
,則此雙曲線(xiàn)的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線(xiàn)的一條漸近線(xiàn)方程為
3
x-y=0
,則該雙曲線(xiàn)的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案