命題p:2+2=5; 命題q:3>2,則下列各項(xiàng)中,正確的是(  )
A、p或q為真命題,q為假命題
B、p且q為假命題,¬q為真命題
C、p且q為假命題,¬q為假命題
D、p且q為假命題,p或q為假命題
考點(diǎn):復(fù)合命題的真假
專題:簡易邏輯
分析:本題考查的知識點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡單命題的真假,再根據(jù)真值表進(jìn)行判斷.
解答: 解:命題p:2+2=5為假命題; 命題q:3>2為真命題,
A、q為真命題,故A錯誤,
B、¬q為假命題,故B錯誤,
C、p假q真⇒p且q為假命題,¬q為假命題,故C正確,
D、p假q真⇒p或q為真命題,故D錯誤,
故選:C.
點(diǎn)評:記憶復(fù)合命題的真值表:其規(guī)律是p與¬p真假相反;p或q一真為真;p且q一假為假.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-(m+1)x+t<0的解集為{x|1<x<2,x∈R},
(1)求m,t的值;
(2)若函數(shù)f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,在區(qū)間(1,+∞)上遞減,求關(guān)于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-ex+a
ex+1
是奇函數(shù).
(1)求a的值,并判斷f(x)在R上的單調(diào)性(不需證明);
(2)若對任意的t∈[-1,2],不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列關(guān)于x的不等式:
x-a2
x+a
<0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為3的圓O中,直徑AB與弦CD垂直,垂足為E(E在A、O之間).若CE=
5
,則AE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從原點(diǎn)向圓x2+y2-12y+27=0作兩條切線,則這兩條切線的夾角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,一條準(zhǔn)線為l:x=4,若橢圓C與x軸交于A、B兩點(diǎn),P是橢圓C上異于A、B的任意一點(diǎn),直線PA交直線l于點(diǎn)M,直線PB交直線l于點(diǎn)N,記直線PA,PB的斜率分別為k1,k2
(1)求橢圓C的方程;
(2)求k1•k2的值;
(3)求證:以MN為直線的圓過x軸上的定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=4sin2xcos2x的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,G是AB延長線上的一點(diǎn),GCD是圓O的割線,過點(diǎn)G作AG的垂線,交直線AC于點(diǎn)E,交直線 AD于點(diǎn)F,過點(diǎn)G作圓O的切線,切點(diǎn)為H.
(1)求證:C,D,E,F(xiàn)四點(diǎn)共圓;
(2)若GH=8,GE=4,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案