已知復(fù)數(shù)z=
-2+4i
1-i
,則z對應(yīng)的點(diǎn)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義,復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出z的坐標(biāo)得答案.
解答: 解:∵z=
-2+4i
1-i
=
(-2+4i)(1+i)
(1-i)(1+i)
=
-6+2i
2
=-3+i
,
∴z對應(yīng)的點(diǎn)的坐標(biāo)為(-3,1),所在的象限是第二象限.
故選:B.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg
1-x
1+x
的定義域?yàn)?div id="obtpzzz" class='quizPutTag' contenteditable='true'> 
,其圖象關(guān)于
 
對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是(  )
A、函數(shù)f(x)=
x2-2x
x-2
是奇函數(shù)
B、函數(shù)f(x)=|x+1|+|x-1|是偶函數(shù)
C、函數(shù)f(x)=
x2+1
是非奇非偶函數(shù)
D、函數(shù)f(x)=1既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行下面的程序框圖,若輸入的m,t,k分別為2,1,3,則輸出的Y=(  )
A、
8
3
B、
11
5
C、
12
7
D、
13
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x-1,2),
b
=(4,y)
,若
a
+2
b
=(9,4)
,則x,y的值分別為( 。
A、2,1B、1,2
C、3,2D、2,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,an+1=
an
an+1
,則an?=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)軸原點(diǎn),∠AOB=90°,A(x1,y1),B(x2,y2)在拋物線y=
1
4
x
2上運(yùn)動(dòng).(x1x2<0,y1y2>0)
(1)求證:點(diǎn)(x1,x2)在反比例函數(shù)y=-
16
x
的圖象上;
(2)求證:直線AB經(jīng)過一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo);
(3)當(dāng)AB∥x軸時(shí),動(dòng)點(diǎn)P以每秒一個(gè)單位的速度自點(diǎn)B向點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以每秒兩個(gè)單位的速度自點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0),試說明PQ的中點(diǎn)在定直線上,并求此定直線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為L,點(diǎn)M在L上,且線段MF交拋物線于點(diǎn)N,若|MN|=2|NF|,且△OMN(O是坐標(biāo)原點(diǎn))的面積為
2
3
3
,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果4sin
θ
2
+3cos
θ
2
=0,那么角θ的終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案