解答:(Ⅰ)解:當(dāng)a=1時(shí),f(x)=-x
3+x
2+b,
因?yàn)閒(-1)=b+2>b,
所以,函數(shù)f(x)的圖象不能總在直線y=b的下方.
(Ⅱ)解:法一、
由f(x)=-x
3+ax
2+b,得f
′(x)=-3x
2+2ax,
令f
′(x)=-3x
2+2ax=0,解得x=0或
x=a,
①當(dāng)a<0時(shí),由f
′(x)>0,解得
a<x<0,
所以f(x)在
(a,0)上是增函數(shù),與題意不符,舍去;
②當(dāng)a=0時(shí),由f
′(x)=-3x
2≤0,
所以f(x)在R上是減函數(shù),與題意不符,舍去;
③當(dāng)a>0時(shí),由f
′(x)>0,解得0<x<
a,
所以f(x)在
(0,a)上是增函數(shù),
又f(x)在(0,2)上是增函數(shù),所以
a≥2,解得a≥3,
綜上,a的取值范圍為[3,+∞).
法二、
由f(x)=-x
3+ax
2+b,得f
′(x)=-3x
2+2ax,
要使函數(shù)f(x)在(0,2)上是增函數(shù),
則需f
′(x)=-3x
2+2ax≥0對(duì)任意x∈(0,2)恒成立,
即2ax≥3x
2對(duì)任意x∈(0,2)恒成立,
也就是a
≥x對(duì)任意x∈(0,2)恒成立,
因?yàn)閥=
x在x∈(0,2)上為增函數(shù),所以a
≥×2=3.
所以,a的取值范圍為[3,+∞).
(Ⅲ)證明:因?yàn)榉匠蘤(x)=-x
3+ax
2+b=0最多只有3個(gè)根,
由題意,方程在區(qū)間(-1,0)內(nèi)僅有一根,
所以f(-1)•f(0)=b(1+a+b)<0,
方程在區(qū)間(0,1)內(nèi)僅有一根,
所以f(0)•f(1)=b(-1+a+b)<0,
當(dāng)b>0時(shí),由b(1+a+b)<0得,1+a+b<0,即a<-b-1,
由b(-1+a+b)<0得,-1+a+b<0,即a<-b+1,
因?yàn)?b-1<-b+1,所以a<-b-1<-1,即a<-1;
當(dāng)b<0時(shí),由b(1+a+b)<0得,1+a+b<0,即a>-b-1,
由b(-1+a+b)<0得,-1+a+b<0,即a>-b+1,
因?yàn)?b-1<-b+1,所以a>-b+1>1,即a>1;
當(dāng)b=0時(shí),因?yàn)閒(0)=0,所以f(x)=0有一根0,
這與題意不符.
∴a>1或a<-1.