設二次函數(shù)滿足下列條件:
①當時, 的最小值為0,且恒成立;
②當時,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當時,就有成立
(1) f(1)="2" ;(2) f(x)= (x+1)2; (3) m的最大值為9.

試題分析:(1)在②中令x=1,有2≤f(1)≤2,故f(1)="2"
(2)由①知二次函數(shù)的關(guān)于直線x=-1對稱,且開口向上
故設此二次函數(shù)為f(x)=a(x+1)2,(a>0),∵f(1)=2,∴a=
∴f(x)= (x+1)2
(3)假設存在t∈R,只需x∈[1,m],就有f(x+t)≤2x.
f(x+t)≤2x(x+t+1)2≤2xx2+(2t-2)x+t2+2t+1≤0.
令g(x)=x2+(2t-2)x+t2+2t+1,g(x)≤0,x∈[1,m].

∴m≤1-t+2≤1-(-4)+2=9
t=-4時,對任意的x∈[1,9]
恒有g(shù)(x)≤0, ∴m的最大值為9.(畫圖用數(shù)形結(jié)合視解答情況給分)
點評:典型題,本題綜合考查“二次問題”,運用了從特殊到一般的思想方法。(3)作為存在性問題,轉(zhuǎn)化成一個二次不等式在給定閉區(qū)間恒成立問題,借助于函數(shù)單調(diào)性,通過限制區(qū)間端點函數(shù)值的范圍,得到不等式組,使問題得解。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)f(x)是減函數(shù),且滿足f[f(x)]=4x-1,則f(x)=__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)的圖象頂點為,且圖象在軸上截得線段長為8,則函數(shù)的解析式為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在區(qū)間上是單調(diào)函數(shù)的條件是( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

解方程(組):
(1)
(2)  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),且恒成立,則對,下面不等式恒成立的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若不等式的解集為,則實數(shù)的取值范圍是           。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程在區(qū)間上有解,則實數(shù)的取值范圍是        (      )                           
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

f(x)=-x2+mx在(-∞,1]上是增函數(shù),則m的取值范圍是(  )
A.{2}B.(-∞,2]C.[2,+∞)D.(-∞,1]

查看答案和解析>>

同步練習冊答案