如圖,已知三棱錐的側(cè)棱與底面垂直,,, M、N分別是的中點,點P在線段上,且,
(1)證明:無論取何值,總有.
(2)當(dāng)時,求平面與平面所成銳二面角的余弦值.
(1)參考解析;(2)
【解析】
試題分析:(1)通過建立坐標(biāo)系,寫出相應(yīng)的點的坐標(biāo),表示出向量與向量.通過計算向量與向量的數(shù)量積,即可得到結(jié)論.
(2)當(dāng)時,要求平面與平面所成銳二面角的余弦值,因為這兩個平面的交線沒畫出來,所以用這兩個平面的法向量的夾角的大小來表示. 平面的法向量較易表示,平面的法向量要通過待定系數(shù)法求得.由于求銳二面角,所以求法向量的夾角的余弦值取正的即可.
試題解析:以A為坐標(biāo)原點,分別以為軸建立空間直角坐標(biāo)系,
則A1(0,0,2),B1(2,0,2), M(0,2,1),N(1,1,0),
,
(1)∵,∴.
∴無論取何值, . 5分
(2)時,, .
而面 ,設(shè)平面的法向量為,
則 ,
設(shè)為平面與平面ABC所成銳二面角,
所以平面與平面所成銳二面角的余弦值是 12分
考點:1.空間坐標(biāo)系的建立.2.向量證明線線垂直.3.通過法向量求二面角的大小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆湖北孝感高級中學(xué)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)y=f(x)在定義域(-,3)內(nèi)的圖像如圖所示.記y=f(x)的導(dǎo)函數(shù)為y=f?(x),則不等式f?(x)≤0的解集為( )
A.[-,1]∪[2,3)
B.[-1,]∪[,]
C.[-,]∪[1,2)
D.(-,-]∪[,]∪[,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:選擇題
.設(shè)雙曲線的一個焦點為F,虛軸的一個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:選擇題
若圓上至少有三個不同的點到直線的距離為,則直線的傾斜角的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考文數(shù)學(xué)卷(解析版) 題型:選擇題
設(shè),關(guān)于的方程有實根,則
是的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知命題:①為兩個命題,則“為真”是“為真”的必要不充分條件;②若為:,則為:;③命題為真命題,命題為假命題,則命題都是真命題;④命題“若,則”的逆否命題是“若,則”.期中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
在中,是角A,B,C的對邊,若成等比數(shù)列,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河南鄭州高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知數(shù)列為等比數(shù)列,,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河南許昌市五高二上期期末聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知中心在原點的雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的離心率為2,則橢圓離心率為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com