設(shè)函數(shù)f(x)=
1
3
x3+
a-1
2
x2-ax+a
,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程f(x)=0在(0,2)內(nèi)恰有兩個實數(shù)根,求a的取值范圍;
(3)當(dāng)a=1時,設(shè)函數(shù)f(x)在[t,t+2](t∈(-3,-2))上的最大值為H(t),最小值為h(t),記g(t)=H(t)-h(t),求函數(shù)g(t)的最小值.
(1)由題意可得f′(x)=x2+(a-1)x-a=(x+a)(x-1),(a>0)
令f′(x)>0可得x<-a,或x>1,令f′(x)<0可得-a<x<1,
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-a)和(1,+∞),單調(diào)遞減區(qū)間為(-a,1);
(2)由(1)知f(x)在(0,1)單調(diào)遞減,(1,2)單調(diào)遞增,
方程f(x)=0在(0,2)內(nèi)恰有兩個實數(shù)根等價于f(0)>0,f(1)<0,f(2)>0,
解得0<a<
1
3
,所以a的取值范圍為(0,
1
3

(3)當(dāng)a=1時,f(x)=
1
3
x3-x+1
,由(1)知f(x)在(-3,-1)單調(diào)遞增,
在(-1,1)單調(diào)遞減,所以,當(dāng)t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],
所以函數(shù)f(x)在[t,-1]上單調(diào)遞增,[-t,t+3]上單調(diào)遞減,
故函數(shù)f(x)在[t,t+3]上的最大值H(t)=f(-1)=
5
3

而最小值h(t)為f(t)與f(t+3)中的較小者,
由f(t+3)-f(t)=3(t+1)(t+2)知,當(dāng)t∈[-3,-2]時,f(t)≤f(t+3),故h(t)=f(t)
所以g(t)=f(-)-f(t),而f(t)在[-3,-2]上單調(diào)遞增,因此f(t)≤f(-2)=
1
3
,
所以g(t)在[-3,-2]上的最小值g(-2)=
5
3
-
1
3
=
4
3
,
即函數(shù)f(x)在[-3,-2]上的最小值為
4
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在實數(shù)集上,它的圖象關(guān)于直線x=1對稱,且當(dāng)x≥1時,f(x)=3x-1,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為D,若對任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).則f(
1
3
)+f(
1
8
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)設(shè)函數(shù)f(x)=ax3+bx2+cx,記f(x)的導(dǎo)函數(shù)是f(x).
(I)當(dāng)a=-1,b=c=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)c=-a2(a>0)時,若函數(shù)f(x)的兩個極值點x1、x2滿足|x1-x2|=2,求b的取值范圍;
(III)若a=-
1
3
令h(x)=|f(x)|,記h(x)在[-1,1]上的最大值為H,當(dāng)b≥0,c∈R時,證明:H
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1處取到一個極小值,且存在實數(shù)m,使f′(m)=-1,
①證明:-3<c≤-1;
②判斷f′(m-4)的正負(fù)并加以證明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案