分析:(1)由于函數(shù)的定義域關(guān)于原點(diǎn)對稱,且滿足由函數(shù)的解析式可得f(-x)=-f(x),可得函數(shù)為奇函數(shù).
(2)由函數(shù)的解析式求得函數(shù)的定義域關(guān)于原點(diǎn)對稱,再由f(-x)≠±f(x),可得函數(shù)為非奇非偶函數(shù)
解答:解:(1)由于函數(shù)的定義域關(guān)于原點(diǎn)對稱,設(shè)x<0,則-x>0,
由函數(shù)的解析式可得f(-x)=-[(-x)
2+(-x)]=-(x
2+x)=-f(x).
設(shè)x>0,則-x<0,由函數(shù)的解析式可得 f(-x)=[(-x)
2+(-x)]=(x
2-x)=-f(x).
綜上可得,函數(shù)為奇函數(shù).
(2)由函數(shù)的解析式可得
,解得-1<x<0,或 0<x<1,
故函數(shù)的定義域?yàn)椋?1,0)∪(0,1),關(guān)于原點(diǎn)對稱.
再由f(-x)=
=
≠±f(x),故函數(shù)為非奇非偶函數(shù).
點(diǎn)評:本題主要考查函數(shù)的奇偶性的判斷方法,屬于中檔題.