【題目】已知關(guān)于x的不等式 (其中a>0).
(1)當(dāng)a=3時,求不等式的解集;
(2)若不等式有解,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:a=3時,|x﹣1|﹣|2x﹣1|>﹣1,
∴ 或 或 ,
解得:﹣1<x<1,
故不等式的解集是(﹣1,1);
(2)解:f(x)= ,
∴f(x)∈(﹣∞, ],
∴f(x)的最大值是 ,
∵不等式有解,
∴ > a,解得:a> .
【解析】(1)通過討論x的范圍得到關(guān)于x的不等式組,解出即可;(2)求出f(x)的最大值,得到關(guān)于a的不等式組,解出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖. (Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ﹣N(μ,σ2),則p(μ﹣σ<ξ≤μ+σ)=0.6826,p(μ﹣2σ<ξ≤μ+2σ)=0.9544,p(μ﹣3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)ξ表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生個數(shù),求ξ的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn , 等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q= (Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn= ,求{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜率為 的直線l與橢圓 + =1(a>b>0)交于不同的兩點(diǎn)A、B.若點(diǎn)A、B在x軸上的射影恰好為橢圓的兩個焦點(diǎn).
(1)求橢圓的離心率;
(2)P是橢圓上的動點(diǎn),若△PAB面積最大值是4 ,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且 .
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos2ωx的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在 上為減函數(shù),則正實(shí)數(shù)ω的最大值為( )
A.
B.1
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點(diǎn),E的準(zhǔn)線與x軸交于點(diǎn)C,△CAB的面積為4,以點(diǎn)D(3,0)為圓心的圓D過點(diǎn)A,B. (Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點(diǎn),求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com