已知函數(shù)取得極小值.

(Ⅰ)求a,b的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

,


解析:

解:(I)因為,所以 

 

解得,

此時,當,當,

所以取極小值,所以符合題目條件; 

(II)由,

時,,此時,

,所以是直線與曲線的一個切點; 

時,,此時,,

,所以是直線與曲線的一個切點;

所以直線l與曲線S相切且至少有兩個切點;

對任意x∈R,,所以

因此直線是曲線的“上夾線”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年廣東佛山質(zhì)檢文)已知函數(shù)取得極小值.

(Ⅰ)求ab的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

(理)已知函數(shù)取得極小值.

(Ⅰ)求a,b的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線. 若直線l與曲線S同時滿足下列兩個條件:

①直線l與曲線S相切且至少有兩個切點;

②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

(1) 類比“上夾線”的定義,給出“下夾線”的定義;

(2) 已知函數(shù)取得極小值,求ab的值;

(3) 證明:直線是(2)中曲線的“上夾線”。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)取得極小值

(Ⅰ)求a,b的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.試證明:直線是曲線的“上夾線”.

查看答案和解析>>

同步練習冊答案